Categorical Semantics and Adjoint Proto-Quipper

Max Gross

McGill University

COMEPLS, Sept. 17th

1/28

Outline

@ Background on Proto-Quipper
© Past Work and Motivation

© Trinities

@ Linear/Non-Linear

© Proto-Quipper-M

G Proto-Quipper-Adj

@ Conclusion

2/28

Background on Proto-Quipper

Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language

3/28

Background on Proto-Quipper

Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language
o Composed of two levels:

3/28

Background on Proto-Quipper

Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language

o Composed of two levels:
o First, building up circuits by applying gates

3/28

Background on Proto-Quipper

Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language

o Composed of two levels:
o First, building up circuits by applying gates
e Second, treating circuits as data.

3/28

Background on Proto-Quipper

Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language

o Composed of two levels:
o First, building up circuits by applying gates
e Second, treating circuits as data.

@ Embedded within Haskell, thus has no type safety or formal semantics

3/28

Background on Proto-Quipper

Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language

o Composed of two levels:
o First, building up circuits by applying gates
e Second, treating circuits as data.

@ Embedded within Haskell, thus has no type safety or formal semantics

@ Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3/28

Past Work and Motivation

Past Work on Proto-Quipper-S

@ Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

4/28

Past Work and Motivation

Past Work on Proto-Quipper-S

@ Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a,b,c = x|q](t,C,a)|True |False| (a,b)|*|ab| Ax.a |

rev | unbox | box” | if a then b else c|let * =a in b |

let (x,y) =a in b.

A,B:=qubit |1 |bool | AQB| A —B|!A| Circ(T,U)

4/28

Past Work and Motivation

Past Work on Proto-Quipper-S

@ Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a,b,c = x|q](t,C,a)|True |False| (a,b)|*|ab| Ax.a |

rev | unbox | box” | if a then b else c|let * =a in b |

let (x,y) =a in b.
A,B:=qubit |1 |bool | AQB| A —B|!A| Circ(T,U)
@ The issue here was the difficulty of implementing these "quantum doo-dads”
in Beluga, where Proto-Quipper constructs various operations on lists of

quantum variables to implement appending circuits, creating new circuits,
and reversing circuits in the operational semantics

4/28

Past Work and Motivation

Past Work on Proto-Quipper-S Cont'd

7777777777777777777

Figure: Two Levels of SPQ

5/28

Trinities

Computational Trilogy

Cartesian Closed Category

Intuisionistic logic

6/28

Trinities

Quantum Computational Trilogy

Monoidal Closed Category

Intuisionistic Linear logic Quantum computation

7/28

Trinities

Background on Category Theory

@ A monoidal category is a category M equipped with:

e Bifunctor ® : M x M — M
o Object I

o Natural isomorphisms & : (X®Y)®Z - X®(Y®Z),1: I® X — X,
r:X@l—X

8/28

Trinities

Background on Category Theory

@ A monoidal category is a category M equipped with:
e Bifunctor @ : M x M — M
o Object I
o Natural isomorphisms & : (X®Y)®Z - X®(Y®Z),1: I® X — X,
r: XI—>X

@ A symmetric monoidal category also has a natural transformation
r: XY —=-Y®X

8/28

Trinities

Background on Category Theory

@ A monoidal category is a category M equipped with:
e Bifunctor ® : M x M — M
o Object I
o Natural isomorphisms & : (X®Y)®Z - X®(Y®Z),1: I® X — X,
r: Xl —X
@ A symmetric monoidal category also has a natural transformation
r: XY —=-Y®X

@ A symmetric monoidal closed category is such that for every object B in M,
the functor — ® B — B has a specified right adjunction.

8/28

Trinities

Background on Category Theory

@ A monoidal category is a category M equipped with:
e Bifunctor @ : M x M — M
o Object I
o Natural isomorphisms & : (X®Y)®Z - X®(Y®Z),1: I® X — X,
r: XI—>X

@ A symmetric monoidal category also has a natural transformation
r: XY —=-Y®X

@ A symmetric monoidal closed category is such that for every object B in M,
the functor — ® B — B has a specified right adjunction.

@ In other words,for every object A, C in M, there is an object B — C such
that
M(A®B,C) =2 M(A,B — C)

8/28

Trinities

Background on Category Theory

A monoidal category is a category M equipped with:
e Bifunctor @ : M x M — M
o Object I
o Natural isomorphisms & : (X®Y)®Z - X®(Y®Z),1: I® X — X,
r: XI—>X

@ A symmetric monoidal category also has a natural transformation
r: XY —=-Y®X

@ A symmetric monoidal closed category is such that for every object B in M,
the functor — ® B — B has a specified right adjunction.

@ In other words,for every object A, C in M, there is an object B — C such
that
M(A®B,C) =2 M(A,B — C)

Cartesian closed category is an SMCC where the tensor product is Cartesian

8/28

Trinities

Quantum Circuits

S
ST -
I
A1 By
f:A]®"'®An_>B1®"'®Bm . f
An Al
st
9/28

Linear/Non-Linear

Mediating Between

@ Stepping back: how can we mediate between the linear and the classical?

10/28

Linear/Non-Linear

Mediating Between

@ Stepping back: how can we mediate between the linear and the classical?
@ Two schools of thought:

10/28

Linear/Non-Linear

Mediating Between

@ Stepping back: how can we mediate between the linear and the classical?

@ Two schools of thought:

@ Classical logic is just a part of linear logic!
@ C(lassical logic and linear logic share a symmetric relationship with ways to get

from one to the other

@ In a way, they are equivalent

10/28

Linear/Non-Linear

Benton's Linear Non-Linear Model

A linear non-linear model consists of:
Q A Cartesian closed category (C,1, X, —)
@ A symmetric monoidal closed category (£, 1, ®, —)

© symmetric monoidal adjunction between symmetric monoidal functors

(F,m):C— Land (G,n): L—C.

11/28

Linear/Non-Linear

Benton's Linear Non-Linear Model

A linear non-linear model consists of:
Q A Cartesian closed category (C,1, X, —)
@ A symmetric monoidal closed category (£, 1, ®, —)

© symmetric monoidal adjunction between symmetric monoidal functors
(F,m):C — L and (G,n): L —C.
Here, a symmetric monoidal functor is a functor F : M — M’ on monoidal
categories equipped with a map my: I' — F(I) in M’ and a natural
transformation myy : F(X) @ F(Y) — F(X ®Y), satisfying various coherence
conditions. A symmetric monoidal adjunction is when the functors are symmetric
monoidal.

11/28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

@ Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

12/28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

@ Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

@ Separation between parameter (classic) and state (linear)

12/28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

@ Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

@ Separation between parameter (classic) and state (linear)

@ Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

12/28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

@ Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

@ Separation between parameter (classic) and state (linear)

@ Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

@ Symmetric monoidal adjunction p 4 b between M and Set forms the LNL
model

12/28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:

13/28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:
o force:!A — B

13/28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:

o force:!A — B
]

f:'A—B
lift(f) : |A —IB

13/28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:

o force:!A — B
]

f:'A—B
lift(f) : |A —IB

e box: I(TU) — p(M(T, U)), inverse is unbox.

13/28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:

o force:!A — B
]

f:'A—B
lift(f) : |A —IB

o box:!(TU) — p(M(T, U)), inverse is unbox.
o Gives us apply : p(M(T,U)) ® T — U
o Always staying within M

13/28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:

o force:!A — B
]

f:'A—B
lift(f) : |A —IB

o box:!(TU) — p(M(T, U)), inverse is unbox.
o Gives us apply : p(M(T,U))®@T — U

o Always staying within M

@ 'The category ™, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13/28

Proto-Quipper-Adj

Proto-Quipper-Adj

@ Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

14/28

Proto-Quipper-Adj

Proto-Quipper-Adj

@ Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

e Foreground the adjunction instead of understanding it as a consequence

14/28

Proto-Quipper-Adj

Proto-Quipper-Adj

@ Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

e Foreground the adjunction instead of understanding it as a consequence
o Clear separation of functional programming layer and circuit layer

14/28

Proto-Quipper-Adj

Proto-Quipper-Adj

@ Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

e Foreground the adjunction instead of understanding it as a consequence
o Clear separation of functional programming layer and circuit layer

@ Also, explicit syntax for circuits (easier for reasoning)

14/28

Proto-Quipper-Adj

Proto-Quipper-Adj

@ Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit
e Foreground the adjunction instead of understanding it as a consequence
o Clear separation of functional programming layer and circuit layer
@ Also, explicit syntax for circuits (easier for reasoning)
@ Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use

14/28

Proto-Quipper-Adj

Types

Ay, By == 1y | Ay @y By | Au —u By | 1Y AL
Ar, By u= 1 | AL @y By | Ap —op By | 15 Ag | 1Y Ay

Aq,Bq == 1q | Aq®q Bq | Aq —q Bq | qubit | 1§ Ar

15/28

Proto-Quipper-Adj

Terms

M,N == x| Ax.M | MN

| () | let () =M in N

| (M,N) | let (x,y) = M in N

| susp M | susp C | force M

| down M | let down x = M in N | let down x = C in M
C,D = x| Ax.C|CD

| () | let () =Cin D

| (C,D) | let (x,y) : A® B=Cin D

| force M | down M | let down x =C in D | g

P:=M|C

16/28

Proto-Quipper-Adj

Some Typing Rules

.aL
ArM:1q4q (o/oRCE) ArM: T AL -)
F/FORCE
A+ force M : Aq A+ force M : AL
Ac,AirM: P Ay Ac,Agx:Ay+N:BL
(F/LETD/F)

Ac, A, Ay rletdownx=MinN: B

(g:U —q S) e X
Aw Fg:Aq —q Bq

(Q/GATE)

17/28

Proto-Quipper-Adj

Categorical Model

@ To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

18/28

Proto-Quipper-Adj

Categorical Model

@ To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

o We take a Cartesian category (C,1, X, —) and a symmetric monoidal closed
category (£, I, ®, —o) with symmetric monoidal functors 1: £ — C and
$: C — L forming a symmetric monoidal adjunction -1

18/28

Proto-Quipper-Adj

Categorical Model

@ To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

o We take a Cartesian category (C,1, X, —) and a symmetric monoidal closed
category (£, I, ®, —o) with symmetric monoidal functors 1: £ — C and
$: C — L forming a symmetric monoidal adjunction -1

@ i.e. there is a natural isomorphism & such that

LLAY)=C(A1TY)

18/28

Proto-Quipper-Adj

Type Interpretation

@ In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

19/28

Proto-Quipper-Adj

Type Interpretation

@ In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

o A type Ay in mode U is interpreted as [Ay]y € C, while a type Ar in mode
L (or a type A>p in linear or unrestricted mode) is interpreted as
[A>i]r € L.

19/28

Proto-Quipper-Adj

Type Interpretation

@ In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

o A type Ay in mode U is interpreted as [Ay]y € C, while a type Ar in mode
L (or a type A>p in linear or unrestricted mode) is interpreted as
[[AEL]]L eL.

Q [lulu=1 [Ll.=1I

@ [Au ® Bulu = [Aulu x [Bulu.
[AL® BL]L = [ALl. ® [BL]L

Q [Ay — Bulu = [Aulu — [Bulu.
[AL — Br]r = [AL]L — [BL]c

O [T ArJu =1[ALl., [Aulr =1 [Aulu
© [Bul: =} [Bulu & [Bul:

19/28

Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:

20/28

Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:

[[x : Cu,...,y : Cil FP: Au]]u : [[Cu]]u X oo X [[C/LIHU — [[Au]]u (1)
[[x : CZL""']/ : C/ZL FP: ALHL : [[CZL]]L@) e ® [[CIZL]]L — [[AL]]L (2)

20/28

Proto-Quipper-Adj

Suspend and Force

Aul—PZAL
Ay Fsusp P:1 Ap

21/28

Proto-Quipper-Adj

Suspend and Force

Aul—PZAL
Ay Fsusp P:1 Ap

Given a morphism P : [Ay]r — [ALlr =4 [Aulu — [AL]r-

21/28

Proto-Quipper-Adj

Suspend and Force

Au FP: AL
Ay Fsusp Pt Ap
Given a morphism P : [Ay]r — [ALlr =4 [Aulu — [AL]r-
By the adjunction ®

susp P = ®(P) : [Aulu =1 [ALlr = [Aulu — [T ALlu

21/28

Proto-Quipper-Adj

Suspend and Force

Au FP: AL
Ay Fsusp Pt Ap
Given a morphism P : [Ay]r — [ALlr =4 [Aulu — [AL]r-
By the adjunction ®

susp P = ®(P) : [Aulu =1 [ALlr = [Aulu — [T ALlu

Au }—M:T AL
Ay + force M : Ap

21/28

Proto-Quipper-Adj

Suspend and Force

Aul—PZAL
Ay Fsusp P:1 Ap

Given a morphism P : [Ay]r — [ALlr =4 [Aulu — [AL]r-
By the adjunction ®

susp P = ®(P) : [Aulu =1 [ALlr = [Aulu — [T ALlu

Au }—M:T AL
Ay + force M : Ap

Given a morphism M : [Ay]u = [T ALlu = [Aulu =71 [ALlL

21/28

Proto-Quipper-Adj

Suspend and Force

Aul—PZAL
Ay Fsusp P:1 Ap

Given a morphism P : [Ay]r — [ALlr =4 [Aulu — [AL]r-
By the adjunction ®

susp P = ®(P) : [Aulu =1 [ALlr = [Aulu — [T ALlu

Au }—M:T AL
Ay + force M : Ap

Given a morphism M : [Ay]u = [T ALlu = [Aulu =71 [ALlL
By the adjunction &

force M = CIfl(M) 4 [Aulu — [ALlL = [Aulr — [ALlL

21/28

Proto-Quipper-Adj

Down

Au}—MiAu
Ay Fdown M :| Ay

22/28

Proto-Quipper-Adj

Down

Au}—MiAu
Ay Fdown M :| Ay

gives us a morphism M : [Ayllu — [Aulu-

22/28

Proto-Quipper-Adj

Down

Au}—MiAu

Ay Fdown M :| Ay

gives us a morphism M : [Ayllu — [Aulu-

We down this to a morphism | M :| [[Au]]u -] [[Au]]u = [[AU]]L — [H ALHL as

required.

22/28

Proto-Quipper-Adj

Apply (Classic)

Ay, AL FEM: Ay — By Ay AL EN:Ay
Ay, Ay, A - MN : By

23/28

Proto-Quipper-Adj

Apply (Classic)

Ay, AL FEM: Ay — By Ay AL EN:Ay
Ay, Ay, A - MN : By

Two morphisms in C:

Tools: CIIAU]]U : [[Au]]u — [[Auﬂu X [[Auﬂu and
evalpa, 118ule © ([Aulu = [Bulu) % [Au]u — [Bulu

23/28

Proto-Quipper-Adj

Apply (Classic)

Ay, AL FEM: Ay — By Ay AL EN:Ay
Ay, Ay, A - MN : By

Two morphisms in C:

Tools: CIIAU]]U : [[Au]]u — [[Auﬂu X [[Auﬂu and
evalpa, 118ule © ([Aulu = [Bulu) % [Au]u — [Bulu

(M X N) ¢} (Id[[AL[]]LI X UIIAU]]UfIIAll,[]]U X Id[[A%J]]U) ¢] (CHAUHU X IdIIAll,[]]U X Id[[AIZJ]]u)

: ([Aulu — [Bulu) * [Bulu

23/28

Proto-Quipper-Adj

Apply (Classic)

Ay, AL FEM: Ay — By Ay AL EN:Ay
Ay, Ay, A - MN : By

Two morphisms in C:

Tools: CIIAU]]U : [[Au]]u — [[Auﬂu X [[Auﬂu and
evalpa, 118ule © ([Aulu = [Bulu) % [Au]u — [Bulu

(M X N) ¢} (Id[[AL[]]LI X UIIAU]]UfIIAll,[]]U X Id[[A%J]]U) ¢] (CHAUHU X IdIIAll,[]]U X Id[[AIZJ]]u)

: ([Aulu — [Bulu) * [Bulu

Apply eval to get the desired result.

23/28

Proto-Quipper-Adj

Apply (Linear)

Au,AlzLI—MZALH)BL Au,AZZLFNZAL
Au, AL, A2 FMN:B;

24/28

Proto-Quipper-Adj

Apply (Linear)

Au,AlzLI—MZALH)BL Au,AZZLFNZAL
Au, AL, A2 FMN:B;

Similar to unrestricted version, but how to reuse Ay;?

24/28

Proto-Quipper-Adj

Apply (Linear)

Au,AlzLI—MZALH)BL Au,AZZLFNZAL
Au, AL, A2 FMN:B;

Similar to unrestricted version, but how to reuse Ay;?
Given Cpa 1, : [Aulu = [Aulu x [Aulu.

\L C[[Auﬂu ZJ, [[Au]]u —>i ([[AU]]U X [[AU]]U)
=| [Aulu =) [Aulu® | [Aulu
= AulL — [Aulr ® [Aulr

24/28

Proto-Quipper-Adj

Apply (Linear)

Au,AlzLI—MZALH)BL Au,AZZLFNZAL

Ay, AL, AL, FMN: By

Similar to unrestricted version, but how to reuse Ay;?
Given Cpa 1, : [Aulu = [Aulu x [Aulu.

\L C[[AUHU ZJ, [[Au]]u —>i ([[AU]]U X [[AU]]U)
=| [Aulu =) [Aulu® | [Aulu
= AulL — [Aulr ® [Aulr

(M®N) o (Id a1, @ Opayy, [aL,], @ 141a2,7,) © (- Clagly ©1dpat, g, @1dpa2 ;)

24/28

Conclusion

Cut for Time

o Categorical semantics for quantum mode (interesting double adjunction)

25/28

Conclusion

Cut for Time

o Categorical semantics for quantum mode (interesting double adjunction)
@ Recovery of Proto-Quipper-M's programming abstractions

25/28

Conclusion

Cut for Time

o Categorical semantics for quantum mode (interesting double adjunction)
@ Recovery of Proto-Quipper-M's programming abstractions

@ Any actual Beluga code

25/28

Conclusion

Further Work

@ Finishing up some proofs (confluence?)

26/28

Conclusion

Further Work

@ Finishing up some proofs (confluence?)
@ 'Foundational calculus’... for what?

26/28

Conclusion

Further Work

@ Finishing up some proofs (confluence?)
@ 'Foundational calculus’... for what?

@ Mechanizing all the proofs

26/28

Conclusion

Further Work

@ Finishing up some proofs (confluence?)
@ 'Foundational calculus’... for what?

@ Mechanizing all the proofs
°

Looking at newer members of the Proto-Quipper family

26/28

Bibliography

ﬁ Benton, P. N. (1994). “A Mixed Linear and Non-Linear Logic: Proofs, Terms
and Models (Extended Abstract)”. In: Selected Papers from the 8th
International Workshop on Computer Science Logic. CSL '94. Berlin,
Heidelberg: Springer-Verlag, pp. 121-135. 1SBN: 3540600175.

@ Lee, Dongho et al. (Nov. 2021). “Concrete Categorical Model of a Quantum
Circuit Description Language with Measurement”. In: 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2021). Ed. by Mikotaj Bojaficzy and Chandra Chekuri.

Vol. 213. Leibniz International Proceedings in Informatics (LIPlcs). Dagstuhl,
Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 51, 51:1-51:20.
DOI: 10.4230/LIPIcs.FSTTCS.2021.51.

[8 Rios, Francisco and Peter Selinger (Feb. 2018). “A Categorical Model for a
Quantum Circuit Description Language (Extended Abstract)”. In: Proceedings
of the 14th International Conference on Quantum Physics and Logic (QPL),
Nijmegen, the Netherlands, July 3-7, 2017. Ed. by Bob Coecke and
Aleks Kissinger. Vol. 266. Electronic Proceedings in Theoretical Computer
Science. Waterloo, NSW, Australia: Open Publishing Association,
pp. 164-178. DOI: 10.4204/EPTCS.266. 11.

27/28

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.4204/EPTCS.266.11

Questions?

	Background on Proto-Quipper
	Past Work and Motivation
	Trinities
	Linear/Non-Linear
	Proto-Quipper-M
	Proto-Quipper-Adj
	Conclusion
	References

