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Background on Proto-Quipper

@ Quipper is a functional, circuit describing programming language

o Composed of two levels:
o First, building up circuits by applying gates
e Second, treating circuits as data.

@ Embedded within Haskell, thus has no type safety or formal semantics

@ Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis
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@ Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a,b,c = x|q](t,C,a)|True |False| (a,b)|*|ab| Ax.a |

rev | unbox | box” | if a then b else c|let * =a in b |

let (x,y) =a in b.
A,B:=qubit |1 |bool | AQB| A —B|!A| Circ(T,U)
@ The issue here was the difficulty of implementing these "quantum doo-dads”
in Beluga, where Proto-Quipper constructs various operations on lists of

quantum variables to implement appending circuits, creating new circuits,
and reversing circuits in the operational semantics
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Intuisionistic Linear logic Quantum computation
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Background on Category Theory

A monoidal category is a category M equipped with:
e Bifunctor @ : M x M — M
o Object I
o Natural isomorphisms & : (X®Y)®Z - X®(Y®Z),1: I® X — X,
r: XI—>X

@ A symmetric monoidal category also has a natural transformation
r: XY —=-Y®X

@ A symmetric monoidal closed category is such that for every object B in M,
the functor — ® B — B has a specified right adjunction.

@ In other words,for every object A, C in M, there is an object B — C such
that
M(A®B,C) =2 M(A,B — C)

Cartesian closed category is an SMCC where the tensor product is Cartesian
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Linear/Non-Linear

Mediating Between

@ Stepping back: how can we mediate between the linear and the classical?

@ Two schools of thought:

@ Classical logic is just a part of linear logic!
@ C(lassical logic and linear logic share a symmetric relationship with ways to get

from one to the other

@ In a way, they are equivalent
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Linear/Non-Linear

Benton's Linear Non-Linear Model

A linear non-linear model consists of:
Q A Cartesian closed category (C,1, X, —)
@ A symmetric monoidal closed category (£, 1, ®, —)

© symmetric monoidal adjunction between symmetric monoidal functors

(F,m):C— Land (G,n): L—C.
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Benton's Linear Non-Linear Model

A linear non-linear model consists of:
Q A Cartesian closed category (C,1, X, —)
@ A symmetric monoidal closed category (£, 1, ®, —)

© symmetric monoidal adjunction between symmetric monoidal functors
(F,m):C — L and (G,n): L —C.
Here, a symmetric monoidal functor is a functor F : M — M’ on monoidal
categories equipped with a map my: I' — F(I) in M’ and a natural
transformation myy : F(X) @ F(Y) — F(X ®Y), satisfying various coherence
conditions. A symmetric monoidal adjunction is when the functors are symmetric
monoidal.
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@ Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

@ Separation between parameter (classic) and state (linear)

@ Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

@ Symmetric monoidal adjunction p 4 b between M and Set forms the LNL
model
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Proto-Quipper-M (Non-Benton-like)

@ Defines a comonad ! : p ob (boxing comonad) along with maps:

o force:!A — B
]

f:'A—B
lift(f) : |A —IB

o box:!(TU) — p(M(T, U)), inverse is unbox.
o Gives us apply : p(M(T,U))®@T — U

o Always staying within M

@ 'The category ™, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’
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Proto-Quipper-Adj

Proto-Quipper-Adj

@ Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit
e Foreground the adjunction instead of understanding it as a consequence
o Clear separation of functional programming layer and circuit layer
@ Also, explicit syntax for circuits (easier for reasoning)
@ Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use
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Proto-Quipper-Adj

Types

Ay, By == 1y | Ay @y By | Au —u By | 1Y AL
Ar, By u= 1 | AL @y By | Ap —op By | 15 Ag | 1Y Ay

Aq,Bq == 1q | Aq®q Bq | Aq —q Bq | qubit | 1§ Ar
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Proto-Quipper-Adj

Terms

M,N == x| Ax.M | MN

| () | let () =M in N

| (M,N) | let (x,y) = M in N

| susp M | susp C | force M

| down M | let down x = M in N | let down x = C in M
C,D = x| Ax.C|CD

| () | let () =Cin D

| (C,D) | let (x,y) : A® B=Cin D

| force M | down M | let down x =C in D | g

P:=M|C
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Proto-Quipper-Adj

Some Typing Rules

.aL
ArM:1q4q (o/oRCE) ArM: T AL - )
F/FORCE
A+ force M : Aq A+ force M : AL
Ac,AirM: P Ay Ac,Agx:Ay+N:BL
(F/LETD/F)

Ac, A, Ay rletdownx=MinN: B

(g:U —q S) e X
Aw Fg:Aq —q Bq

(Q/GATE)
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Categorical Model

@ To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.
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Categorical Model

@ To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

o We take a Cartesian category (C,1, X, —) and a symmetric monoidal closed
category (£, I, ®, —o) with symmetric monoidal functors 1: £ — C and
$: C — L forming a symmetric monoidal adjunction -1

@ i.e. there is a natural isomorphism & such that

LLAY)=C(A1TY)
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Type Interpretation

@ In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.
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Proto-Quipper-Adj

Type Interpretation

@ In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

o A type Ay in mode U is interpreted as [Ay]y € C, while a type Ar in mode
L (or a type A>p in linear or unrestricted mode) is interpreted as
[[AEL]]L eL.

Q [lulu=1 [Ll.=1I

@ [Au ® Bulu = [Aulu x [Bulu.
[AL® BL]L = [ALl. ® [BL]L

Q [Ay — Bulu = [Aulu — [Bulu.
[AL — Br]r = [AL]L — [BL]c

O [T ArJu =1[ALl., [ Aulr =1 [Aulu
© [Bul: =} [Bulu & [ Bul:
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Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:
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Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:

[[x : Cu,...,y : Cil FP: Au]]u : [[Cu]]u X oo X [[C/LIHU — [[Au]]u (1)
[[x : CZL""']/ : C/ZL FP: ALHL : [[CZL]]L@) e ® [[CIZL]]L — [[AL]]L (2)
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Suspend and Force

Aul—PZAL
Ay Fsusp P:1 Ap
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Proto-Quipper-Adj

Suspend and Force

Aul—PZAL
Ay Fsusp P:1 Ap

Given a morphism P : [Ay]r — [ALlr =4 [Aulu — [AL]r-
By the adjunction ®

susp P = ®(P) : [Aulu =1 [ALlr = [Aulu — [T ALlu

Au }—M:T AL
Ay + force M : Ap

Given a morphism M : [Ay]u = [T ALlu = [Aulu =71 [ALlL
By the adjunction &

force M = CIfl(M) 4 [Aulu — [ALlL = [Aulr — [ALlL
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Down
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Ay Fdown M :| Ay
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Proto-Quipper-Adj

Down

Au}—MiAu

Ay Fdown M :| Ay

gives us a morphism M : [Ayllu — [Aulu-

We down this to a morphism | M :| [[Au]]u -] [[Au]]u = [[AU]]L — [H ALHL as

required.
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Ay, AL FEM: Ay — By Ay AL EN:Ay
Ay, Ay, A - MN : By
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Proto-Quipper-Adj

Apply (Classic)

Ay, AL FEM: Ay — By Ay AL EN:Ay
Ay, Ay, A - MN : By

Two morphisms in C:

Tools: CIIAU]]U : [[Au]]u — [[Auﬂu X [[Auﬂu and
evalpa, 118ule © ([Aulu = [Bulu) % [Au]u — [Bulu

(M X N) ¢} (Id[[AL[]]LI X UIIAU]]UfIIAll,[]]U X Id[[A%J]]U) ¢] (CHAUHU X IdIIAll,[]]U X Id[[AIZJ]]u)

: ([Aulu — [Bulu) * [Bulu

Apply eval to get the desired result.
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Proto-Quipper-Adj

Apply (Linear)

Au,AlzLI—MZALH)BL Au,AZZLFNZAL
Au, AL, A2 FMN:B;
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Proto-Quipper-Adj

Apply (Linear)

Au,AlzLI—MZALH)BL Au,AZZLFNZAL

Ay, AL, AL, FMN: By

Similar to unrestricted version, but how to reuse Ay;?
Given Cpa 1, : [Aulu = [Aulu x [Aulu.

\L C[[AUHU ZJ, [[Au]]u —>i ([[AU]]U X [[AU]]U)
=| [Aulu =) [Aulu® | [Aulu
= AulL — [ Aulr ® [ Aulr

(M®N) o (Id a1, @ Opayy, [aL, ], @ 141a2,7,) © (- Clagly ©1dpat, g, @1dpa2 ;)
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Cut for Time

o Categorical semantics for quantum mode (interesting double adjunction)
@ Recovery of Proto-Quipper-M's programming abstractions

@ Any actual Beluga code
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Conclusion

Further Work

@ Finishing up some proofs (confluence?)
@ 'Foundational calculus’... for what?

@ Mechanizing all the proofs
°

Looking at newer members of the Proto-Quipper family
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