
Categorical Semantics and Adjoint Proto-Quipper

Max Gross

McGill University

COMEPLS, Sept. 17th

1 / 28

Outline

1 Background on Proto-Quipper

2 Past Work and Motivation

3 Trinities

4 Linear/Non-Linear

5 Proto-Quipper-M

6 Proto-Quipper-Adj

7 Conclusion

2 / 28

Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:
First, building up circuits by applying gates
Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3 / 28

Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:

First, building up circuits by applying gates
Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3 / 28

Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:
First, building up circuits by applying gates

Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3 / 28

Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:
First, building up circuits by applying gates
Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3 / 28

Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:
First, building up circuits by applying gates
Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3 / 28

Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:
First, building up circuits by applying gates
Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis

3 / 28

Past Work and Motivation

Past Work on Proto-Quipper-S

Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a, b, c ::= x | q | (t, C, a) | True | False | ⟨a, b⟩ | ∗ | ab | λx.a |
rev | unbox | boxT | if a then b else c | let ∗ = a in b |
let ⟨x, y⟩ = a in b.

A, B ::= qubit | 1 | bool | A ⊗ B | A ⊸ B | !A | Circ(T, U)

The issue here was the difficulty of implementing these ”quantum doo-dads”
in Beluga, where Proto-Quipper constructs various operations on lists of
quantum variables to implement appending circuits, creating new circuits,
and reversing circuits in the operational semantics

4 / 28

Past Work and Motivation

Past Work on Proto-Quipper-S

Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a, b, c ::= x | q | (t, C, a) | True | False | ⟨a, b⟩ | ∗ | ab | λx.a |
rev | unbox | boxT | if a then b else c | let ∗ = a in b |
let ⟨x, y⟩ = a in b.

A, B ::= qubit | 1 | bool | A ⊗ B | A ⊸ B | !A | Circ(T, U)

The issue here was the difficulty of implementing these ”quantum doo-dads”
in Beluga, where Proto-Quipper constructs various operations on lists of
quantum variables to implement appending circuits, creating new circuits,
and reversing circuits in the operational semantics

4 / 28

Past Work and Motivation

Past Work on Proto-Quipper-S

Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a, b, c ::= x | q | (t, C, a) | True | False | ⟨a, b⟩ | ∗ | ab | λx.a |
rev | unbox | boxT | if a then b else c | let ∗ = a in b |
let ⟨x, y⟩ = a in b.

A, B ::= qubit | 1 | bool | A ⊗ B | A ⊸ B | !A | Circ(T, U)

The issue here was the difficulty of implementing these ”quantum doo-dads”
in Beluga, where Proto-Quipper constructs various operations on lists of
quantum variables to implement appending circuits, creating new circuits,
and reversing circuits in the operational semantics

4 / 28

Past Work and Motivation

Past Work on Proto-Quipper-S Cont’d

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

5 / 28

Trinities

Computational Trilogy

Cartesian Closed Category

Intuisionistic logic λ-calculus

6 / 28

Trinities

Quantum Computational Trilogy

Monoidal Closed Category

Intuisionistic Linear logic Quantum computation

7 / 28

Trinities

Background on Category Theory

A monoidal category is a category M equipped with:

Bifunctor ⊗ : M×M → M
Object I
Natural isomorphisms α : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z), l : I ⊗ X → X,
r : X ⊗ I → X

A symmetric monoidal category also has a natural transformation
σ : X ⊗ Y → Y ⊗ X
A symmetric monoidal closed category is such that for every object B in M,
the functor −⊗ B → B has a specified right adjunction.

In other words,for every object A, C in M, there is an object B ⊸ C such
that

M(A ⊗ B, C) ∼= M(A, B ⊸ C)

Cartesian closed category is an SMCC where the tensor product is Cartesian

8 / 28

Trinities

Background on Category Theory

A monoidal category is a category M equipped with:

Bifunctor ⊗ : M×M → M
Object I
Natural isomorphisms α : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z), l : I ⊗ X → X,
r : X ⊗ I → X

A symmetric monoidal category also has a natural transformation
σ : X ⊗ Y → Y ⊗ X

A symmetric monoidal closed category is such that for every object B in M,
the functor −⊗ B → B has a specified right adjunction.

In other words,for every object A, C in M, there is an object B ⊸ C such
that

M(A ⊗ B, C) ∼= M(A, B ⊸ C)

Cartesian closed category is an SMCC where the tensor product is Cartesian

8 / 28

Trinities

Background on Category Theory

A monoidal category is a category M equipped with:

Bifunctor ⊗ : M×M → M
Object I
Natural isomorphisms α : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z), l : I ⊗ X → X,
r : X ⊗ I → X

A symmetric monoidal category also has a natural transformation
σ : X ⊗ Y → Y ⊗ X
A symmetric monoidal closed category is such that for every object B in M,
the functor −⊗ B → B has a specified right adjunction.

In other words,for every object A, C in M, there is an object B ⊸ C such
that

M(A ⊗ B, C) ∼= M(A, B ⊸ C)

Cartesian closed category is an SMCC where the tensor product is Cartesian

8 / 28

Trinities

Background on Category Theory

A monoidal category is a category M equipped with:

Bifunctor ⊗ : M×M → M
Object I
Natural isomorphisms α : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z), l : I ⊗ X → X,
r : X ⊗ I → X

A symmetric monoidal category also has a natural transformation
σ : X ⊗ Y → Y ⊗ X
A symmetric monoidal closed category is such that for every object B in M,
the functor −⊗ B → B has a specified right adjunction.

In other words,for every object A, C in M, there is an object B ⊸ C such
that

M(A ⊗ B, C) ∼= M(A, B ⊸ C)

Cartesian closed category is an SMCC where the tensor product is Cartesian

8 / 28

Trinities

Background on Category Theory

A monoidal category is a category M equipped with:

Bifunctor ⊗ : M×M → M
Object I
Natural isomorphisms α : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z), l : I ⊗ X → X,
r : X ⊗ I → X

A symmetric monoidal category also has a natural transformation
σ : X ⊗ Y → Y ⊗ X
A symmetric monoidal closed category is such that for every object B in M,
the functor −⊗ B → B has a specified right adjunction.

In other words,for every object A, C in M, there is an object B ⊸ C such
that

M(A ⊗ B, C) ∼= M(A, B ⊸ C)

Cartesian closed category is an SMCC where the tensor product is Cartesian

8 / 28

Trinities

Quantum Circuits

S

T

A1

An

.

.
.
.

B1

A1

s

t

S ⊗ T

I

ff : A1 ⊗ · · · ⊗ An → B1 ⊗ · · · ⊗ Bm

s ⊗ t

9 / 28

Linear/Non-Linear

Mediating Between

Stepping back: how can we mediate between the linear and the classical?

Two schools of thought:
1 Classical logic is just a part of linear logic!
2 Classical logic and linear logic share a symmetric relationship with ways to get

from one to the other

In a way, they are equivalent

10 / 28

Linear/Non-Linear

Mediating Between

Stepping back: how can we mediate between the linear and the classical?

Two schools of thought:

1 Classical logic is just a part of linear logic!
2 Classical logic and linear logic share a symmetric relationship with ways to get

from one to the other

In a way, they are equivalent

10 / 28

Linear/Non-Linear

Mediating Between

Stepping back: how can we mediate between the linear and the classical?

Two schools of thought:
1 Classical logic is just a part of linear logic!
2 Classical logic and linear logic share a symmetric relationship with ways to get

from one to the other

In a way, they are equivalent

10 / 28

Linear/Non-Linear

Benton’s Linear Non-Linear Model

A linear non-linear model consists of:

1 A Cartesian closed category (C, 1,×,→)

2 A symmetric monoidal closed category (L, I,⊗,⊸)

3 symmetric monoidal adjunction between symmetric monoidal functors
(F, m) : C → L and (G, n) : L → C.

Here, a symmetric monoidal functor is a functor F : M → M′ on monoidal
categories equipped with a map mI : I′ → F(I) in M′ and a natural
transformation mX,Y : F(X)⊗′ F(Y) → F(X ⊗ Y), satisfying various coherence
conditions. A symmetric monoidal adjunction is when the functors are symmetric
monoidal.

11 / 28

Linear/Non-Linear

Benton’s Linear Non-Linear Model

A linear non-linear model consists of:

1 A Cartesian closed category (C, 1,×,→)

2 A symmetric monoidal closed category (L, I,⊗,⊸)

3 symmetric monoidal adjunction between symmetric monoidal functors
(F, m) : C → L and (G, n) : L → C.

Here, a symmetric monoidal functor is a functor F : M → M′ on monoidal
categories equipped with a map mI : I′ → F(I) in M′ and a natural
transformation mX,Y : F(X)⊗′ F(Y) → F(X ⊗ Y), satisfying various coherence
conditions. A symmetric monoidal adjunction is when the functors are symmetric
monoidal.

11 / 28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

Separation between parameter (classic) and state (linear)

Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

Symmetric monoidal adjunction p ⊣ ♭ between M and Set forms the LNL
model

12 / 28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

Separation between parameter (classic) and state (linear)

Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

Symmetric monoidal adjunction p ⊣ ♭ between M and Set forms the LNL
model

12 / 28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

Separation between parameter (classic) and state (linear)

Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

Symmetric monoidal adjunction p ⊣ ♭ between M and Set forms the LNL
model

12 / 28

Proto-Quipper-M

Proto-Quipper-M (Benton-like)

Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

Separation between parameter (classic) and state (linear)

Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

Symmetric monoidal adjunction p ⊣ ♭ between M and Set forms the LNL
model

12 / 28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift(f) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.
Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13 / 28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift(f) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.
Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13 / 28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift(f) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.
Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13 / 28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift(f) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.

Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13 / 28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift(f) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.
Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13 / 28

Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift(f) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.
Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’

13 / 28

Proto-Quipper-Adj

Proto-Quipper-Adj

Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

Foreground the adjunction instead of understanding it as a consequence
Clear separation of functional programming layer and circuit layer

Also, explicit syntax for circuits (easier for reasoning)

Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use

14 / 28

Proto-Quipper-Adj

Proto-Quipper-Adj

Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

Foreground the adjunction instead of understanding it as a consequence

Clear separation of functional programming layer and circuit layer

Also, explicit syntax for circuits (easier for reasoning)

Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use

14 / 28

Proto-Quipper-Adj

Proto-Quipper-Adj

Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

Foreground the adjunction instead of understanding it as a consequence
Clear separation of functional programming layer and circuit layer

Also, explicit syntax for circuits (easier for reasoning)

Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use

14 / 28

Proto-Quipper-Adj

Proto-Quipper-Adj

Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

Foreground the adjunction instead of understanding it as a consequence
Clear separation of functional programming layer and circuit layer

Also, explicit syntax for circuits (easier for reasoning)

Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use

14 / 28

Proto-Quipper-Adj

Proto-Quipper-Adj

Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

Foreground the adjunction instead of understanding it as a consequence
Clear separation of functional programming layer and circuit layer

Also, explicit syntax for circuits (easier for reasoning)

Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use

14 / 28

Proto-Quipper-Adj

Types

AU, BU ::= 1U | AU ⊗U BU | AU ⊸U BU | ↑U
L AL

AL, BL ::= 1L | AL ⊗L BL | AL ⊸L BL | ↑L
Q AQ | ↓U

L AU

AQ, BQ ::= 1Q | AQ ⊗Q BQ | AQ ⊸Q BQ | qubit | ↓L
Q AL

15 / 28

Proto-Quipper-Adj

Terms

M, N ::= x | λx.M | MN

| ⟨⟩ | let ⟨⟩ = M in N

| ⟨M, N⟩ | let ⟨x, y⟩ = M in N

| susp M | susp C | force M

| down M | let down x = M in N | let down x = C in M

C, D ::= x | λx.C | CD

| ⟨⟩ | let ⟨⟩ = C in D

| ⟨C, D⟩ | let ⟨x, y⟩ : A ⊗ B = C in D

| force M | down M | let down x = C in D | g

P ::= M | C

16 / 28

Proto-Quipper-Adj

Some Typing Rules

17 / 28

Proto-Quipper-Adj

Categorical Model

To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

We take a Cartesian category (C, 1,×,→) and a symmetric monoidal closed
category (L, I,⊗,⊸) with symmetric monoidal functors ↑: L → C and
↓: C → L forming a symmetric monoidal adjunction ↓⊣↑
i.e. there is a natural isomorphism Φ such that

L(↓ A, Y) ∼= C(A, ↑ Y)

18 / 28

Proto-Quipper-Adj

Categorical Model

To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

We take a Cartesian category (C, 1,×,→) and a symmetric monoidal closed
category (L, I,⊗,⊸) with symmetric monoidal functors ↑: L → C and
↓: C → L forming a symmetric monoidal adjunction ↓⊣↑

i.e. there is a natural isomorphism Φ such that

L(↓ A, Y) ∼= C(A, ↑ Y)

18 / 28

Proto-Quipper-Adj

Categorical Model

To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

We take a Cartesian category (C, 1,×,→) and a symmetric monoidal closed
category (L, I,⊗,⊸) with symmetric monoidal functors ↑: L → C and
↓: C → L forming a symmetric monoidal adjunction ↓⊣↑
i.e. there is a natural isomorphism Φ such that

L(↓ A, Y) ∼= C(A, ↑ Y)

18 / 28

Proto-Quipper-Adj

Type Interpretation

In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

A type AU in mode U is interpreted as JAUKU ∈ C, while a type AL in mode
L (or a type A≥L in linear or unrestricted mode) is interpreted as
JA≥LKL ∈ L.

1 J1UKU = 1, J1LKL = I
2 JAU ⊗ BUKU = JAUKU × JBUKU,

JAL ⊗ BLKL = JALKL ⊗ JBLKL
3 JAU ⊸ BUKU = JAUKU → JBUKU,

JAL ⊸ BLKL = JALKL ⊸ JBLKL
4 J↑ ALKU =↑ JALKL, J↓ AUKL =↓ JAUKU

5 JBUKL =↓ JBUKU
(4)
= J↓ BUKL

19 / 28

Proto-Quipper-Adj

Type Interpretation

In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

A type AU in mode U is interpreted as JAUKU ∈ C, while a type AL in mode
L (or a type A≥L in linear or unrestricted mode) is interpreted as
JA≥LKL ∈ L.

1 J1UKU = 1, J1LKL = I
2 JAU ⊗ BUKU = JAUKU × JBUKU,

JAL ⊗ BLKL = JALKL ⊗ JBLKL
3 JAU ⊸ BUKU = JAUKU → JBUKU,

JAL ⊸ BLKL = JALKL ⊸ JBLKL
4 J↑ ALKU =↑ JALKL, J↓ AUKL =↓ JAUKU

5 JBUKL =↓ JBUKU
(4)
= J↓ BUKL

19 / 28

Proto-Quipper-Adj

Type Interpretation

In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

A type AU in mode U is interpreted as JAUKU ∈ C, while a type AL in mode
L (or a type A≥L in linear or unrestricted mode) is interpreted as
JA≥LKL ∈ L.

1 J1UKU = 1, J1LKL = I
2 JAU ⊗ BUKU = JAUKU × JBUKU,

JAL ⊗ BLKL = JALKL ⊗ JBLKL
3 JAU ⊸ BUKU = JAUKU → JBUKU,

JAL ⊸ BLKL = JALKL ⊸ JBLKL
4 J↑ ALKU =↑ JALKL, J↓ AUKL =↓ JAUKU

5 JBUKL =↓ JBUKU
(4)
= J↓ BUKL

19 / 28

Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:

Jx : CU , . . . , y : C′
U ⊢ P : AUKU : JCUKU × · · · × JC′

UKU → JAUKU (1)

Jx : C≥L, . . . , y : C′
≥L ⊢ P : ALKL : JC≥LKL ⊗ · · · ⊗ JC′

≥LKL → JALKL (2)

20 / 28

Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:

Jx : CU , . . . , y : C′
U ⊢ P : AUKU : JCUKU × · · · × JC′

UKU → JAUKU (1)

Jx : C≥L, . . . , y : C′
≥L ⊢ P : ALKL : JC≥LKL ⊗ · · · ⊗ JC′

≥LKL → JALKL (2)

20 / 28

Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.
By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL
By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL

21 / 28

Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.

By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL
By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL

21 / 28

Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.
By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL
By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL

21 / 28

Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.
By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL
By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL

21 / 28

Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.
By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL

By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL

21 / 28

Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.
By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL
By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL

21 / 28

Proto-Quipper-Adj

Down

∆U ⊢ M : AU
∆U ⊢ down M :↓ AU

gives us a morphism M : J∆UKU → JAUKU.
We down this to a morphism ↓ M :↓ J∆UKU →↓ JAUKU = J∆UKL → J↓ ALKL as
required.

22 / 28

Proto-Quipper-Adj

Down

∆U ⊢ M : AU
∆U ⊢ down M :↓ AU

gives us a morphism M : J∆UKU → JAUKU.

We down this to a morphism ↓ M :↓ J∆UKU →↓ JAUKU = J∆UKL → J↓ ALKL as
required.

22 / 28

Proto-Quipper-Adj

Down

∆U ⊢ M : AU
∆U ⊢ down M :↓ AU

gives us a morphism M : J∆UKU → JAUKU.
We down this to a morphism ↓ M :↓ J∆UKU →↓ JAUKU = J∆UKL → J↓ ALKL as
required.

22 / 28

Proto-Quipper-Adj

Apply (Classic)

∆U , ∆1
U ⊢ M : AU ⊸ BU ∆U , ∆2

U ⊢ N : AU

∆U , ∆1
U , ∆2

U ⊢ M N : BU

Two morphisms in C:

Tools: CJAUKU
: JAUKU → JAUKU × JAUKU and

evalJAUKU ,JBUKU
: (JAUKU → JBUKU)× JAUKU → JBUKU

(M × N) ◦ (IdJ∆UKU
× σJ∆UKU ,J∆1

UKU
× IdJ∆2

UKU
) ◦ (CJ∆UKU

× IdJ∆1
UKU

× IdJ∆2
UKU

)

: (JAUKU → JBUKU)× JBUKU

Apply eval to get the desired result.

23 / 28

Proto-Quipper-Adj

Apply (Classic)

∆U , ∆1
U ⊢ M : AU ⊸ BU ∆U , ∆2

U ⊢ N : AU

∆U , ∆1
U , ∆2

U ⊢ M N : BU

Two morphisms in C:

Tools: CJAUKU
: JAUKU → JAUKU × JAUKU and

evalJAUKU ,JBUKU
: (JAUKU → JBUKU)× JAUKU → JBUKU

(M × N) ◦ (IdJ∆UKU
× σJ∆UKU ,J∆1

UKU
× IdJ∆2

UKU
) ◦ (CJ∆UKU

× IdJ∆1
UKU

× IdJ∆2
UKU

)

: (JAUKU → JBUKU)× JBUKU

Apply eval to get the desired result.

23 / 28

Proto-Quipper-Adj

Apply (Classic)

∆U , ∆1
U ⊢ M : AU ⊸ BU ∆U , ∆2

U ⊢ N : AU

∆U , ∆1
U , ∆2

U ⊢ M N : BU

Two morphisms in C:

Tools: CJAUKU
: JAUKU → JAUKU × JAUKU and

evalJAUKU ,JBUKU
: (JAUKU → JBUKU)× JAUKU → JBUKU

(M × N) ◦ (IdJ∆UKU
× σJ∆UKU ,J∆1

UKU
× IdJ∆2

UKU
) ◦ (CJ∆UKU

× IdJ∆1
UKU

× IdJ∆2
UKU

)

: (JAUKU → JBUKU)× JBUKU

Apply eval to get the desired result.

23 / 28

Proto-Quipper-Adj

Apply (Classic)

∆U , ∆1
U ⊢ M : AU ⊸ BU ∆U , ∆2

U ⊢ N : AU

∆U , ∆1
U , ∆2

U ⊢ M N : BU

Two morphisms in C:

Tools: CJAUKU
: JAUKU → JAUKU × JAUKU and

evalJAUKU ,JBUKU
: (JAUKU → JBUKU)× JAUKU → JBUKU

(M × N) ◦ (IdJ∆UKU
× σJ∆UKU ,J∆1

UKU
× IdJ∆2

UKU
) ◦ (CJ∆UKU

× IdJ∆1
UKU

× IdJ∆2
UKU

)

: (JAUKU → JBUKU)× JBUKU

Apply eval to get the desired result.

23 / 28

Proto-Quipper-Adj

Apply (Linear)

∆U , ∆1
≥L ⊢ M : AL ⊸ BL ∆U , ∆2

≥L ⊢ N : AL

∆U , ∆1
≥L, ∆2

≥L ⊢ M N : BL

Similar to unrestricted version, but how to reuse ∆U?
Given CJAUKU

: JAUKU → JAUKU × JAUKU,

↓ CJAUKU
:↓ JAUKU →↓ (JAUKU × JAUKU)

=↓ JAUKU ⊸↓ JAUKU⊗ ↓ JAUKU

= J↓ AUKL ⊸ J↓ AUKL ⊗ J↓ AUKL

(M⊗ N) ◦ (Id↓J∆UKU
⊗σJ∆UKL ,J∆1

≥LKL
⊗ IdJ∆2

≥LKL
) ◦ (↓ CJ∆UKU

⊗ IdJ∆1
≥LKL

⊗ IdJ∆2
≥LKL

)

24 / 28

Proto-Quipper-Adj

Apply (Linear)

∆U , ∆1
≥L ⊢ M : AL ⊸ BL ∆U , ∆2

≥L ⊢ N : AL

∆U , ∆1
≥L, ∆2

≥L ⊢ M N : BL

Similar to unrestricted version, but how to reuse ∆U?

Given CJAUKU
: JAUKU → JAUKU × JAUKU,

↓ CJAUKU
:↓ JAUKU →↓ (JAUKU × JAUKU)

=↓ JAUKU ⊸↓ JAUKU⊗ ↓ JAUKU

= J↓ AUKL ⊸ J↓ AUKL ⊗ J↓ AUKL

(M⊗ N) ◦ (Id↓J∆UKU
⊗σJ∆UKL ,J∆1

≥LKL
⊗ IdJ∆2

≥LKL
) ◦ (↓ CJ∆UKU

⊗ IdJ∆1
≥LKL

⊗ IdJ∆2
≥LKL

)

24 / 28

Proto-Quipper-Adj

Apply (Linear)

∆U , ∆1
≥L ⊢ M : AL ⊸ BL ∆U , ∆2

≥L ⊢ N : AL

∆U , ∆1
≥L, ∆2

≥L ⊢ M N : BL

Similar to unrestricted version, but how to reuse ∆U?
Given CJAUKU

: JAUKU → JAUKU × JAUKU,

↓ CJAUKU
:↓ JAUKU →↓ (JAUKU × JAUKU)

=↓ JAUKU ⊸↓ JAUKU⊗ ↓ JAUKU

= J↓ AUKL ⊸ J↓ AUKL ⊗ J↓ AUKL

(M⊗ N) ◦ (Id↓J∆UKU
⊗σJ∆UKL ,J∆1

≥LKL
⊗ IdJ∆2

≥LKL
) ◦ (↓ CJ∆UKU

⊗ IdJ∆1
≥LKL

⊗ IdJ∆2
≥LKL

)

24 / 28

Proto-Quipper-Adj

Apply (Linear)

∆U , ∆1
≥L ⊢ M : AL ⊸ BL ∆U , ∆2

≥L ⊢ N : AL

∆U , ∆1
≥L, ∆2

≥L ⊢ M N : BL

Similar to unrestricted version, but how to reuse ∆U?
Given CJAUKU

: JAUKU → JAUKU × JAUKU,

↓ CJAUKU
:↓ JAUKU →↓ (JAUKU × JAUKU)

=↓ JAUKU ⊸↓ JAUKU⊗ ↓ JAUKU

= J↓ AUKL ⊸ J↓ AUKL ⊗ J↓ AUKL

(M⊗ N) ◦ (Id↓J∆UKU
⊗σJ∆UKL ,J∆1

≥LKL
⊗ IdJ∆2

≥LKL
) ◦ (↓ CJ∆UKU

⊗ IdJ∆1
≥LKL

⊗ IdJ∆2
≥LKL

)

24 / 28

Conclusion

Cut for Time

Categorical semantics for quantum mode (interesting double adjunction)

Recovery of Proto-Quipper-M’s programming abstractions

Any actual Beluga code

25 / 28

Conclusion

Cut for Time

Categorical semantics for quantum mode (interesting double adjunction)

Recovery of Proto-Quipper-M’s programming abstractions

Any actual Beluga code

25 / 28

Conclusion

Cut for Time

Categorical semantics for quantum mode (interesting double adjunction)

Recovery of Proto-Quipper-M’s programming abstractions

Any actual Beluga code

25 / 28

Conclusion

Further Work

Finishing up some proofs (confluence?)

’Foundational calculus’... for what?

Mechanizing all the proofs

Looking at newer members of the Proto-Quipper family

26 / 28

Conclusion

Further Work

Finishing up some proofs (confluence?)

’Foundational calculus’... for what?

Mechanizing all the proofs

Looking at newer members of the Proto-Quipper family

26 / 28

Conclusion

Further Work

Finishing up some proofs (confluence?)

’Foundational calculus’... for what?

Mechanizing all the proofs

Looking at newer members of the Proto-Quipper family

26 / 28

Conclusion

Further Work

Finishing up some proofs (confluence?)

’Foundational calculus’... for what?

Mechanizing all the proofs

Looking at newer members of the Proto-Quipper family

26 / 28

Conclusion

Bibliography

Benton, P. N. (1994). “A Mixed Linear and Non-Linear Logic: Proofs, Terms
and Models (Extended Abstract)”. In: Selected Papers from the 8th
International Workshop on Computer Science Logic. CSL ’94. Berlin,
Heidelberg: Springer-Verlag, pp. 121–135. isbn: 3540600175.

Lee, Dongho et al. (Nov. 2021). “Concrete Categorical Model of a Quantum
Circuit Description Language with Measurement”. In: 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2021). Ed. by Miko laj Bojańczy and Chandra Chekuri.
Vol. 213. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 51, 51:1–51:20.
doi: 10.4230/LIPIcs.FSTTCS.2021.51.
Rios, Francisco and Peter Selinger (Feb. 2018). “A Categorical Model for a

Quantum Circuit Description Language (Extended Abstract)”. In: Proceedings
of the 14th International Conference on Quantum Physics and Logic (QPL),
Nijmegen, the Netherlands, July 3–7, 2017. Ed. by Bob Coecke and
Aleks Kissinger. Vol. 266. Electronic Proceedings in Theoretical Computer
Science. Waterloo, NSW, Australia: Open Publishing Association,
pp. 164–178. doi: 10.4204/EPTCS.266.11.

27 / 28

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.4204/EPTCS.266.11

Conclusion

Questions?

28 / 28

	Background on Proto-Quipper
	Past Work and Motivation
	Trinities
	Linear/Non-Linear
	Proto-Quipper-M
	Proto-Quipper-Adj
	Conclusion
	References

