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Background on Proto-Quipper

Background on Proto-Quipper

Quipper is a functional, circuit describing programming language

Composed of two levels:
First, building up circuits by applying gates
Second, treating circuits as data.

Embedded within Haskell, thus has no type safety or formal semantics

Proto-Quipper refers to a family of formally defined fragments of Quipper,
starting with Proto-Quipper-S from Julien Ross’ thesis
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Past Work and Motivation

Past Work on Proto-Quipper-S

Previously, worked on mechanizing the meta-theory of Proto-Quipper-S in
Beluga using a linearity predicate on typing judgments

a, b, c ::= x | q | (t, C, a) | True | False | ⟨a, b⟩ | ∗ | ab | λx.a |
rev | unbox | boxT | if a then b else c | let ∗ = a in b |
let ⟨x, y⟩ = a in b.

A, B ::= qubit | 1 | bool | A ⊗ B | A ⊸ B | !A | Circ(T, U)

The issue here was the difficulty of implementing these ”quantum doo-dads”
in Beluga, where Proto-Quipper constructs various operations on lists of
quantum variables to implement appending circuits, creating new circuits,
and reversing circuits in the operational semantics
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Past Work and Motivation

Past Work on Proto-Quipper-S Cont’d

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ
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Trinities

Computational Trilogy

Cartesian Closed Category

Intuisionistic logic λ-calculus
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Trinities

Quantum Computational Trilogy

Monoidal Closed Category

Intuisionistic Linear logic Quantum computation
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Trinities

Background on Category Theory

A monoidal category is a category M equipped with:

Bifunctor ⊗ : M×M → M
Object I
Natural isomorphisms α : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z), l : I ⊗ X → X,
r : X ⊗ I → X

A symmetric monoidal category also has a natural transformation
σ : X ⊗ Y → Y ⊗ X
A symmetric monoidal closed category is such that for every object B in M,
the functor −⊗ B → B has a specified right adjunction.

In other words,for every object A, C in M, there is an object B ⊸ C such
that

M(A ⊗ B, C) ∼= M(A, B ⊸ C)

Cartesian closed category is an SMCC where the tensor product is Cartesian
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Trinities

Quantum Circuits

S

T

A1

An

.

.
.
.

B1

A1

s

t

S ⊗ T

I

ff : A1 ⊗ · · · ⊗ An → B1 ⊗ · · · ⊗ Bm

s ⊗ t
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Linear/Non-Linear

Mediating Between

Stepping back: how can we mediate between the linear and the classical?

Two schools of thought:
1 Classical logic is just a part of linear logic!
2 Classical logic and linear logic share a symmetric relationship with ways to get

from one to the other

In a way, they are equivalent
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Linear/Non-Linear

Benton’s Linear Non-Linear Model

A linear non-linear model consists of:

1 A Cartesian closed category (C, 1,×,→)

2 A symmetric monoidal closed category (L, I,⊗,⊸)

3 symmetric monoidal adjunction between symmetric monoidal functors
(F, m) : C → L and (G, n) : L → C.

Here, a symmetric monoidal functor is a functor F : M → M′ on monoidal
categories equipped with a map mI : I′ → F(I) in M′ and a natural
transformation mX,Y : F(X)⊗′ F(Y) → F(X ⊗ Y), satisfying various coherence
conditions. A symmetric monoidal adjunction is when the functors are symmetric
monoidal.
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Proto-Quipper-M

Proto-Quipper-M (Benton-like)

Proto-Quipper-M begins with a categorical model and builds up a
programming language around it

Separation between parameter (classic) and state (linear)

Takes a symmetric monoidal category M and Yoneda embeds it into a

product closed SMC M, defining M as Fam(M). States live in M,
parameters live in Set.

Symmetric monoidal adjunction p ⊣ ♭ between M and Set forms the LNL
model
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Proto-Quipper-M

Proto-Quipper-M (Non-Benton-like)

Defines a comonad ! : p ◦ ♭ (boxing comonad) along with maps:

force : !A → B

f : !A → B
lift( f ) : !A →!B

box : !(TU) → p(M(T, U)), inverse is unbox.
Gives us apply : p(M(T, U))⊗ T → U

Always staying within M

’The category M, together with the adjunction given by p and b forms a
linear-non-linear model in the sense of Benton’
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Proto-Quipper-Adj

Proto-Quipper-Adj

Equivalent to Proto-Quipper-M, but seeks to make the adjoint structure
more explicit

Foreground the adjunction instead of understanding it as a consequence
Clear separation of functional programming layer and circuit layer

Also, explicit syntax for circuits (easier for reasoning)

Thus, Proto-Quipper-Adj is composed of two programming languages with
three modes of use
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Proto-Quipper-Adj

Types

AU, BU ::= 1U | AU ⊗U BU | AU ⊸U BU | ↑U
L AL

AL, BL ::= 1L | AL ⊗L BL | AL ⊸L BL | ↑L
Q AQ | ↓U

L AU

AQ, BQ ::= 1Q | AQ ⊗Q BQ | AQ ⊸Q BQ | qubit | ↓L
Q AL
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Proto-Quipper-Adj

Terms

M, N ::= x | λx.M | MN

| ⟨⟩ | let ⟨⟩ = M in N

| ⟨M, N⟩ | let ⟨x, y⟩ = M in N

| susp M | susp C | force M

| down M | let down x = M in N | let down x = C in M

C, D ::= x | λx.C | CD

| ⟨⟩ | let ⟨⟩ = C in D

| ⟨C, D⟩ | let ⟨x, y⟩ : A ⊗ B = C in D

| force M | down M | let down x = C in D | g

P ::= M | C

16 / 28



Proto-Quipper-Adj

Some Typing Rules
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Proto-Quipper-Adj

Categorical Model

To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

We take a Cartesian category (C, 1,×,→) and a symmetric monoidal closed
category (L, I,⊗,⊸) with symmetric monoidal functors ↑: L → C and
↓: C → L forming a symmetric monoidal adjunction ↓⊣↑
i.e. there is a natural isomorphism Φ such that

L(↓ A, Y) ∼= C(A, ↑ Y)

18 / 28



Proto-Quipper-Adj

Categorical Model

To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

We take a Cartesian category (C, 1,×,→) and a symmetric monoidal closed
category (L, I,⊗,⊸) with symmetric monoidal functors ↑: L → C and
↓: C → L forming a symmetric monoidal adjunction ↓⊣↑

i.e. there is a natural isomorphism Φ such that

L(↓ A, Y) ∼= C(A, ↑ Y)

18 / 28



Proto-Quipper-Adj

Categorical Model

To draw comparison to Proto-Quipper-M, we focus solely on the blue,
functional language which operates over classical and linear modes.

We take a Cartesian category (C, 1,×,→) and a symmetric monoidal closed
category (L, I,⊗,⊸) with symmetric monoidal functors ↑: L → C and
↓: C → L forming a symmetric monoidal adjunction ↓⊣↑
i.e. there is a natural isomorphism Φ such that

L(↓ A, Y) ∼= C(A, ↑ Y)

18 / 28



Proto-Quipper-Adj

Type Interpretation

In Adjoint Proto-Quipper, types are interpreted in C or L depending on their
mode.

A type AU in mode U is interpreted as JAUKU ∈ C, while a type AL in mode
L (or a type A≥L in linear or unrestricted mode) is interpreted as
JA≥LKL ∈ L.

1 J1UKU = 1, J1LKL = I
2 JAU ⊗ BUKU = JAUKU × JBUKU,

JAL ⊗ BLKL = JALKL ⊗ JBLKL
3 JAU ⊸ BUKU = JAUKU → JBUKU,

JAL ⊸ BLKL = JALKL ⊸ JBLKL
4 J↑ ALKU =↑ JALKL, J↓ AUKL =↓ JAUKU

5 JBUKL =↓ JBUKU
(4)
= J↓ BUKL

19 / 28
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Proto-Quipper-Adj

Context Interpretation

Sequents are interpreted as morphisms in the category corresponding to the mode
of their succedent:

Jx : CU , . . . , y : C′
U ⊢ P : AUKU : JCUKU × · · · × JC′

UKU → JAUKU (1)

Jx : C≥L, . . . , y : C′
≥L ⊢ P : ALKL : JC≥LKL ⊗ · · · ⊗ JC′

≥LKL → JALKL (2)
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Proto-Quipper-Adj

Suspend and Force

∆U ⊢ P : AL
∆U ⊢ susp P :↑ AL

Given a morphism P : J∆UKL ⊸ JALKL =↓ J∆UKU ⊸ JALKL.
By the adjunction Φ

susp P = Φ(P) : J∆UKU →↑ JALKL = J∆UKU → J↑ ALKU

∆U ⊢ M :↑ AL
∆U ⊢ force M : AL

Given a morphism M : J∆UKU → J↑ ALKU = J∆UKU →↑ JALKL
By the adjunction Φ

force M = Φ−1(M) :↓ J∆UKU → JALKL = J∆UKL → JALKL
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Proto-Quipper-Adj

Down

∆U ⊢ M : AU
∆U ⊢ down M :↓ AU

gives us a morphism M : J∆UKU → JAUKU.
We down this to a morphism ↓ M :↓ J∆UKU →↓ JAUKU = J∆UKL → J↓ ALKL as
required.
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Proto-Quipper-Adj

Apply (Classic)

∆U , ∆1
U ⊢ M : AU ⊸ BU ∆U , ∆2

U ⊢ N : AU

∆U , ∆1
U , ∆2

U ⊢ M N : BU

Two morphisms in C:

Tools: CJAUKU
: JAUKU → JAUKU × JAUKU and

evalJAUKU ,JBUKU
: (JAUKU → JBUKU)× JAUKU → JBUKU

(M × N) ◦ (IdJ∆UKU
× σJ∆UKU ,J∆1

UKU
× IdJ∆2

UKU
) ◦ (CJ∆UKU

× IdJ∆1
UKU

× IdJ∆2
UKU

)

: (JAUKU → JBUKU)× JBUKU

Apply eval to get the desired result.
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Proto-Quipper-Adj

Apply (Linear)

∆U , ∆1
≥L ⊢ M : AL ⊸ BL ∆U , ∆2

≥L ⊢ N : AL

∆U , ∆1
≥L, ∆2

≥L ⊢ M N : BL

Similar to unrestricted version, but how to reuse ∆U?
Given CJAUKU

: JAUKU → JAUKU × JAUKU,

↓ CJAUKU
:↓ JAUKU →↓ (JAUKU × JAUKU)

=↓ JAUKU ⊸↓ JAUKU⊗ ↓ JAUKU

= J↓ AUKL ⊸ J↓ AUKL ⊗ J↓ AUKL

(M⊗ N) ◦ (Id↓J∆UKU
⊗σJ∆UKL ,J∆1

≥LKL
⊗ IdJ∆2

≥LKL
) ◦ (↓ CJ∆UKU

⊗ IdJ∆1
≥LKL

⊗ IdJ∆2
≥LKL

)
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Cut for Time

Categorical semantics for quantum mode (interesting double adjunction)

Recovery of Proto-Quipper-M’s programming abstractions

Any actual Beluga code
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Mechanizing all the proofs

Looking at newer members of the Proto-Quipper family
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