
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Structural Proto-Quipper: Mechanization of a LinearQuantum
Programming Language in a Structural Setting

Max Gross
max.gross@mail.mcgill.ca

Department of Mathematics and Statistics, McGill University
Montreal, Quebec, Canada

Abstract
This project aims to develop a general technique for mechaniz-
ing quantum programming languages that rely on linear logic for
resource management, such as the handling of qubits. The main
challenge is integrating linear logic, which enforces constraints like
one-time use of resources, into systems built on structural logic
frameworks, like the Higher Order Abstract Syntax. To address
this, the project adopts the strategy of "enforcing linearity with-
out linearity." As a proof of concept, we mechanize and improve
Proto-Quipper, a quantum programming language used to gen-
erate circuits, utilizing Beluga, a tool for formal reasoning about
systems. The approach is grounded in Crary’s method for repre-
senting Girard’s linear logic in Twelf, and introduces two linearity
predicates that ensure classical and quantum variables are used
linearly within typing judgments. This technique leverages Bel-
uga’s HOAS to streamline proofs and avoids the need for external
extensions, unlike prior work by Mahmoud et al., who mechanized
Proto-Quipper using a linear extension of Hybrid in Coq. Further,
we optimize Proto-Quipper’s treatment of circuits for mechaniza-
tion by treating them as functions in a linear lambda calculus. While
the mechanization of Proto-Quipper is successful, demonstrating
the soundness of the approach, proofs for key properties such as
subject reduction and progress are still under development. Future
efforts will focus on completing these proofs and expanding the
method to more complex quantum programming languages, such
as Proto-Quipper-Dyn, which introduces dynamic lifting.

CCS Concepts
• Theory of computation→ Logic and verification; Quantum
computation theory.

Keywords
linear logic, quantum lambda calculus, verification, logical frame-
work, Proto-Quipper, linear predicate

ACM Reference Format:
Max Gross. 2025. Structural Proto-Quipper : Mechanization of a Linear Quan-
tum Programming Language in a Structural Setting. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

(Conference acronym ’XX). ACM, New York, NY, USA, 10 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
The concept of quantum computation is relatively new, with Paul
Benioff and Richard Feynman first proposing in 1982 that quan-
tum systems could be used to perform computations. Feynman, in
particular, argued that it was “impossible to represent the results
of quantum mechanics with a classical universal device.”[3] He
envisioned quantum computers as tools for simulating quantum
systems more efficiently than classical computers, which are limited
by the prohibitive cost of modeling quantum processes[5][13].

In the 1990s, Peter Shor introduced algorithms to solve cryp-
tographic problems, like factoring large integers and the discrete
logarithm problem, that classical computers handle inefficiently.
Shor’s breakthrough highlighted the unique potential of quantum
computers, sparking a surge of interest in their design. However,
it wasn’t until 1996 that researchers began to discuss the need for
quantum programming languages, hindered by the lack of practi-
cal quantum hardware to support them[5]. Even today, achieving
"quantum supremacy," where quantum computers outperform clas-
sical ones on complex tasks, remains an ongoing challenge.

Gay counters criticism regarding quantum programming lan-
guages by pointing out that, in classical computing, the lack of a
solid semantic foundation in programming languages has led to
significant issues in software engineering. He argues that allow-
ing the programming cart to precede the computing horse can be
beneficial[5]. This paper aligns with that perspective, as formal veri-
fication of programming languages has also faced criticism for being
overly theoretical and detracting from practical language design[2].
However, coming together, quantum computation presents a com-
pelling case for mechanization. Quantum programs are notoriously
challenging to reason about due to the probabilistic nature of quan-
tum mechanics, along with concepts like entanglement and super-
position. Formal verification and proof assistants can play a crucial
role in rigorously proving the correctness of quantum algorithms,
thereby enhancing their reliability and effectiveness.

The primary challenge of mechanizing quantum programming
languages lies in their reliance on linear logic to model quantum
resources, specifically a linear lambda calculus with a typing system
based on Girard’s linear logic[6]. This approach stems from the
"no-cloning property," which states that it is impossible to create
perfect copies of an unknown quantum state[13].

In most encodings of linear programming languages, contexts
are treated explicitly (for example, as lists). However, this becomes
unwieldy when formalizing meta-theoretical statements, as it re-
quires managing context-dependent operations while keeping track

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Gross

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

of resource consumption. In the context of mechanizing quantum
programming languages, properties of bindings in the host lan-
guage using Higher Order Abstract Syntax can significantly aid
in verifying aspects like alpha equivalence and substitution lem-
mas. However, existing HOAS frameworks manage contexts in a
structural manner, which poses challenges for quantum computing
languages that necessitate linear contexts. This discrepancy means
that applying HOAS to handle quantum wires naively may not
ensure linearity, complicating the proof of crucial meta-theoretic
properties[12]. To effectively mechanize quantum programming
languages and capture the essential linearity required, advance-
ments in HOAS approaches are necessary.

In this paper, we present a use case for a novel technique that
employs higher-order abstract syntax to mechanize linear quantum
programming languages, originally proposed by Sano et al[12]. for
use in concurrent settings and adapted from work by Crary[1].
Specifically, we offer a proof-of-concept mechanization of Proto-
Quipper[11], a small circuit-building quantum programming lan-
guage based on the aforementioned quantum lambda calculus, in
Beluga, along with mechanization-facing improvements to its treat-
ment of circuits.

To that end, we introduce Structural Proto-Quipper (SPQ), noting
that its context (as in Beluga) is structural. Yet, we encode linearity
using linearity predicates on typing judgements in the language,
defining

lin (𝑥 : 𝐵; Γ, 𝑥 : 𝐵 ⊨ 𝑎 : 𝐴), lin/q (𝑞; Γ, {𝑞} ⊨ 𝑎 : 𝐴)

saying that within some typing judgment that 𝑎 is of type 𝐴, where
𝑎 depends on a variable 𝑥 or a quantum variable 𝑞, 𝑥 or 𝑞 are used
linearly. While this predicate is local to a typing judgment, by virtue
of its application each time we use typing rules that add variable or
quantum variable bindings, it is the case that SPQ operates globally
linearly, without linearity. Further work will be made in proving
something like adequacy between SPQ and PQ, although certain
key differences will make this tricky.

This is because, in Proto-Quipper, circuits are treated abstractly
as uninterpreted circuit constants coming from a countable set,
where it assumes "that there exists a constant symbol for every
possible quantum circuit."[11]. Operations on circuits, such as ap-
pending two circuits together, is interpreted as operations on lists -
the exact problem we are avoiding in this paper. Thus, SPQ amends
PQ to treat circuits as functions in a linear lambda calculus taking
and returning inputs as tuples of wires as quantum variables. We
also have a linearity predicate

clamlin (𝜆𝑞. 𝑀)

saying that a quantum variable is being used linearly in an ex-
pression.

Note that our linearity approach at the term level differs from
Sano et al. in that their linearity predicate is defined with respect
to processes themselves, not typing judgments on them[12]. This
is due to a feature of Proto-Quipper such that terms are the same
whether or not they are of a linear or non-linear type, and thus
we must type them to determine if linearity is required. There is
a simple rule saying that linearity always holds on these shared
resources. Note further that while Proto-Quipper has been mech-
anized by Mahmoud et al.[9], they did so using Hybrid, a linear

extension to Coq. Our contribution is a mechanization within the
logical framework itself.

2 Introduction to Linearity and Quantum
Programming

Linear logic is a form of substructural logic that differs from clas-
sical structural logics by omitting two key rules: contraction and
weakening. These rules, which are fundamental in traditional logics,
are generalized as follows:

Γ ⊢ 𝑡
Γ, 𝑥 ⊢ 𝑡 [Weakening-L] Γ ⊢ 𝑡

Γ ⊢ 𝑡, 𝑥 [Weakening-R]

Γ, 𝑥, 𝑥 ⊢ 𝑡
Γ, 𝑥 ⊢ 𝑡 [Contraction-L] Γ ⊢ 𝑡, 𝑡

Γ ⊢ 𝑡 [Contraction-R]

Linear logic introduces a discipline on resource management by
rejecting these rules. In particular, it does not allow assumptions
(resources) to be arbitrarily duplicated (contraction) or discarded
(weakening).

The linear lambda calculus serves as the computational counter-
part to linear logic, much like how the traditional lambda calculus
corresponds to classical structural logic. In this sense, proofs in
linear logic are represented as terms in the linear lambda calculus.

Semantically, linear logic was originally developed as a formal
system to study resource availability [6]. In this framework, propo-
sitions are treated as resources that must be consumed exactly
once—they cannot be freely duplicated (no contraction) or ignored
(no weakening). This perspective has deep connections to quantum
computing, where linear logic provides an ideal model for reasoning
about quantum systems.

More specifically, linear logic has been interpreted as a form
of quantum logic [10]. The absence of weakening mirrors the no-
cloning theorem of quantum computation, which states that arbi-
trary quantum states cannot be copied. Similarly, the absence of
contraction corresponds to the no-deletion rule, which forbids the
arbitrary erasure of quantum information.

Building on these ideas, the quantum lambda calculus [14] was
introduced as a computational model grounded in the principles
of linear logic. This work led to the development of Quipper [7], a
practical quantum programming language designed to apply formal
methods to quantum algorithm analysis.

Our focus in this project is on mechanizing Proto-Quipper, which
is “a limited (but still expressive) fragment of the Quipper language...
[designed to be] completely type-safe” [11]. Proto-Quipper retains
the resource-sensitive principles of linear logic and provides a foun-
dation for rigorous reasoning about quantum programs within a
type-theoretic framework..

3 Linearity Predicate
Our main goal is to leverage Higher Order Abstract Syntax (HOAS)
to manage contexts and variable substitutions. Our contribution,
therefore, is an encoding within the Logical Framework (LF) itself
using the technique of linearity predicates, as opposed to relying on
extended libraries, as done in previous work in the area [9]. Crary
initially envisioned such a technique to encode the linear lambda
calculus in Twelf [1]. Further work by Sano et al. [12] mechanized

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Structural Proto-Quipper : Mechanization of a Linear Quantum Programming Language in a Structural Setting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Wadler’s Classical Processes [15], a system based on linear logic,
much like Proto-Quipper.

Crary argues that designing a technique formechanizationwithin
the LF layer is worthwhile for several reasons. First, there is the
question of accessibility: do researchers engaged in formalizing
metatheory have access to tools capable of reasoning linearly, such
as Linear LF? He suggests they do not and that it is best for re-
searchers to work with the tools they already have. Second, even if
extensions for linear languages become more widely available, the
issue remains unresolved for those studying other substructural log-
ics, such as affine, strict, or modal logic. Moreover, treating contexts
explicitly for substructurality is simply not a viable option [1].

In general, the linearity predicate acts as a local well-formedness
check that forms a pseudo-context whenever a new variable is
introduced. It ensures that the new variable is used linearly, as ex-
pected, even though the actual context managed by HOAS remains
structural. For example, in Crary’s implementation in Twelf, the
lambda rule is represented as:

Γ; (Δ, 𝑥 :𝐴) ⊢ 𝑀 : 𝐵
Γ;Δ ⊢ 𝜆𝑥.𝑀 : 𝐴 ⊸ 𝐵

of/llam
: of (llam ([x] M x)) (lolli A B)
<- ({x:term} of x A -> of (M x) B)
<- linear ([x] M x).

linear/llam
: linear ([y] llam ([x] M y x))
<- ({x:term} linear ([y] M y x)).

Without delving into Twelf’s syntax, this states that a lambda
function is of type𝐴 ⊸ 𝐵 if a given variable of type𝐴, used linearly,
ensures that its body is of type 𝐵. Similarly, a linearity rule based
on this typing judgment asserts that if a variable is used linearly
within the body of a function, then it is linear within that function.
Globally, this implies that every variable in the program is used
linearly.

As with the work of Sano et al. [12], we must introduce a version
of the language to encode that operates structurally, using this
pseudo-linear context. We achieve this below, creating Structural
Proto-Quipper (SPQ). We begin with a discussion of circuits, as they
operate as a linear lambda calculus, closely resembling Crary’s
system.

4 Treatment of Circuits
The way that Proto-Quipper handles circuits is challenging for
mechanization. In the paper, they treat circuits abstractly as coming
from a countable set C of circuit constants, equipped with functions
In and Out which describe their inputs and outputs, respectively.
To do so, they assume that every possible circuit is represented as
some 𝐶 ∈ C and, at the term level, are modeled as (𝑡,𝐶, 𝑎) with
𝑡 and 𝑎 as terms themselves providing structure to these inputs
and outputs. At the type level, Proto-Quipper argues that circuit
(𝑡,𝐶, 𝑎) is of type Circ(𝑇,𝑈 ) if 𝑡 (resp. 𝑎) takes the shape of𝑇 (resp.
𝑈 ), where 𝑇 and 𝑈 are quantum data types. The typing rule is as
follows:

𝑄1 ⊢ 𝑡 : 𝑇 !Δ;𝑄2 ⊢ 𝑎 : 𝑈 In(𝐶) = 𝑄1 Out(𝐶) = 𝑄2
!Δ; ∅ ⊢ (𝑡,𝐶, 𝑎) :!𝑛Circ(𝑇,𝑈 ) (𝑐𝑖𝑟𝑐)

However, in SPQ’s structural settingwherewe let Beluga’s HOAS
handle contexts, it is impossible for us to say, without loss of gen-
erality, that some empty context in addition to the (uninterpreted)
outputs of a circuit will prove that 𝑎 is of type𝑈 .

Further, because Proto-Quipper is a circuit building language,
it also describes operations on circuits. It is the case, for example,
that Proto-Quipper is able to build up functions that are "boxed"
into circuits. In the operational semantics, this is done through
creating new circuits on free quantum wires, as below, with the
box function taking a circuit generating function to a circuit by
finding fresh variable names (Spec) and creating an identity circuit
on those wires (new).

SpecFQ (𝑣) (𝑇 ) = 𝑡 new(FQ (𝑡)) = 𝐷

[𝐶,𝑏𝑜𝑥𝑇 (𝑣)] → [𝐶, (𝑡, 𝐷, 𝑣𝑡)]
(𝑏𝑜𝑥)

Similarly, to continue building circuits, Proto-Quipper allows
us to append two circuits circuits together over bindings by first
turning one into a function, as in the rule below, with the unbox
function taking a circuit to a circuit generating function applied to
a new collection of input wires. This new circuit 𝐷 and its binding
are then tacked onto the circuit we are currently building through
the Append function.

𝑏𝑖𝑛𝑑 (𝑣,𝑢 ) = 𝔟 Append(𝐶,𝐷, 𝔟) = (𝐶′, 𝔟′ ) FQ (𝑢′ ) ⊆ dom(𝔟′ )
[𝐶, (𝑢𝑛𝑏𝑜𝑥 (𝑢,𝐷,𝑢′ ) )𝑣 ] → [𝐶′, 𝔟′ (𝑢′ ) ] (𝑢𝑛𝑏𝑜𝑥 )

In both cases, Proto-Quipper develops many tools to ensure
freshness of quantum variables and one-to-one mappings of input
wires to output wires. These tools, however, are set operations
which require reasoning about explicit lists of variables; this is
perpendicular to the goals of our research and makes proofs of
metatheoretic properties deeply challenging.

To resolve this, Structural Proto-Quipper proposes a two-level
system between circuits and their creation, i.e. between the term
level and the circuit level of our language, with circuits expressed
as functions in a linear lambda calculus on variables representing
quantum wires. We treat 𝑏𝑜𝑥𝑇 and 𝑢𝑛𝑏𝑜𝑥 as translations from
circuits to terms and vice versa.

Thus, the terms𝑤 , 𝑢 in our circuit linear lambda calculus are

𝑤,𝑢 ::=𝑞 | ∗ | ⟨𝑤,𝑢⟩ | 𝜆𝑞. 𝑤 | app𝑤 𝑢 | let ∗ = 𝑤 in 𝑢 |
let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢 | rev𝑤

where we type collections of wires as base types

𝐴𝐵, 𝐵𝐵 ::= qubit | 1 | 𝐵𝐵 ⊗ 𝐶𝐵

and circuits as reversible functions from base types to base types.

𝐶𝐶 ::= 𝐴𝐵 ⇁ 𝐵𝐵

.
The type system for our circuit level is nearly identical to Crary’s

higher order representation of the linear lambda calculus[1]. We say
that Γ |= 𝑤 : 𝐴𝐵 if𝑤 is of base type 𝐵𝐵 under the structural context
Γ. Further, we say that Γ |= 𝜆𝑞. 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵 if a circuit is of input
base type 𝐴𝐵 and output base type 𝐵𝐵 under Γ. For linearity, there
are no reusable resources and thus typing is no longer needed, so

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Gross

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

SPQ

Quantum 𝜆-calculus

Circ(T,U)

Linear 𝜆-calculus

Circuits

𝜆 i.o.

unbox box𝑇

Figure 1: Two Levels of SPQ

clamlin (𝑞; 𝑤) says that variable 𝑞 is used linearly within term
𝑤 .

First, we have a linearity rule for variables, reading that a variable
𝑞 is linear in 𝑞

clamlin (𝑞; 𝑞) {clamlin/var}

Axiomatically, we type units as follows, with no linearity predi-
cate as no variables can be used within.

Γ |= ∗ :𝐵 1
{∗𝑖 }

For tuples of quantum variables, however, we must ensure lin-
earity in both branches as follows.

Γ |= 𝑤 :𝐵 𝐴𝐵 Γ |= 𝑢 :𝐵 𝐵𝐵

Γ |= ⟨𝑤,𝑢⟩ :𝐵 𝐴𝐵 ⊗ 𝐵𝐵
{⊗𝑖 }

clamlin (𝑞; 𝑤)
clamlin (𝑞; ⟨𝑤,𝑢⟩) {clamlin/⊗1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; ⟨𝑤,𝑢⟩) {clamlin/⊗2}

The lambda typing rule requires the argument to be used linearly
in its body. The linearity rule for lambda functions says variable
𝑞 is linear in a function if it is linear in its body. Here, the lambda
functions represent circuits in Structural Proto–Quipper. It is the
sole constructor for circuits.

Γ, 𝑞 :𝐵 𝐴𝐵 |= 𝑤 :𝐵 𝐵𝐵 clamlin (𝑞; 𝑤)
Γ |= 𝜆𝑞. 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵

{𝜆}

clamlin (𝑥 ; 𝑢)
clamlin (𝑥 ; 𝜆𝑞. 𝑢) {clamlin/𝜆}

The typing and linearity rules for applying circuits onto inputs
is similar to that for the pair, in that we must check linearity of
both the function and its input.

Γ |= 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵 Γ |= 𝑢 :𝐵 𝐵𝐵

Γ |= app 𝑤 𝑢 :𝐵 𝐵𝐵
{𝑎𝑝𝑝}

clamlin (𝑞; 𝑤)
clamlin (𝑞; app 𝑤 𝑢) {clamlin/app1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; app 𝑤 𝑢) {clamlin/app2}

.
The same goes for unit elimination.

Γ |= 𝑤 :𝐵 1 Γ |= 𝑢 :𝐵 𝐴𝐵

Γ |= let ∗ = 𝑤 in 𝑢 :𝐵 𝐴𝐵
{∗𝑒 }

clamlin (𝑞; 𝑤)
clamlin (𝑞; let ∗ = 𝑤 in 𝑢) {clamlin/letunit1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; let ∗ = 𝑤 in 𝑢) {clamlin/letunit2}

And for the tensor elimination, as with the lambda typing rule,
we must ensure linearity of the variables we use for substitution.
Here,

Γ |= 𝑤 :𝐵 𝐴𝐵 ⊗ 𝐵𝐵
Γ, 𝑞 :𝐵 𝐴𝐵, 𝑢 :𝐵 𝐵𝐵 |= 𝑢 :𝐵 𝐷𝐵

clamlin (𝑞; 𝑢)
clamlin (𝑣 ; 𝑢)
Γ |= let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢 :𝐵 𝐷𝐵

clamlin (𝑞; 𝑤)
clamlin (𝑞; let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢) {clamlin/letpair1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢) {clamlin/letpair2}

Lastly, reversing a circuit is equivalent to swapping the shape
of its inputs and outputs, as below. This is the main novelty ver-
sus Crary’s paper. Linearity of a variable within a circuit implies
linearity of a c variable within its reverse.

Γ |= 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵

Γ |= rev 𝑤 :𝐶 𝐵𝐵 ⇁ 𝐴𝐵
{𝑟𝑒𝑣}

clamlin (𝑞; 𝑤)
clamlin (𝑞; rev 𝑤) {clamlin/rev}

Below is our encoding of the linear lambda calculus for circuits
in the LF layer of Beluga. It gives a good idea of how linearity and
typing are intertwined.

1 clam : type.
2 clam/unit : clam.
3 clam/pair : clam -> clam -> clam.
4 clam/lam : (clam -> clam) -> clam.
5 clam/app : clam -> clam -> clam.
6 clam/let_unit : clam -> clam -> clam.
7 clam/let_pair : (clam -> clam -> clam

) -> clam -> clam.
8 clam/rev : clam -> clam.
9

10 ctp_base : type.
11 ctp_base/qubit : ctp_base.
12 ctp_base/one : ctp_base.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Structural Proto-Quipper : Mechanization of a Linear Quantum Programming Language in a Structural Setting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

13 ctp_base/times : ctp_base -> ctp_base
-> ctp_base.

14

15 ctp_circ : type.
16 ctp_circ/lolli : ctp_base -> ctp_base

-> ctp_circ.
17

18 ofctp_base : clam -> ctp_base -> type.
19 ofctp_circ : clam -> ctp_circ -> type.
20 clamlin : (clam -> clam) -> type.
21

22 clamlin/var : clamlin (\x. x).
23

24 ofctp_base/unit : ofctp_base clam/unit
ctp_base/one.

25

26 ofctp_base/pair : ofctp_base a A ->
ofctp_base b B

27 -> ofctp_base (clam/pair a b)
(ctp_base/times A B).

28 clamlin/pair1 : clamlin (\x. M x) ->
clamlin (\x. clam/pair (M x) N).

29 clamlin/pair2 : clamlin (\x. N x) ->
clamlin (\x. clam/pair M (N x)).

30

31 ofctp_circ/lam : clamlin (\x. M x)
32 -> ({x : clam} ofctp_base x A

-> ofctp_base (M x) B)
33 -> ofctp_circ (clam/lam (\x. M

x)) (ctp_circ/lolli A B).
34 clamlin/lam : ({x : clam} clamlin (\y

. M y x))
35 -> clamlin (\y. clam/lam (\x. M y

x)).
36

37 ofctp_circ/rev : ofctp_circ M (ctp_circ
/lolli A B)

38 -> ofctp_circ (clam/rev M) (
ctp_circ/times B A).

39

40 ofctp_base/app : ofctp_base N A
41 -> ofctp_circ M (ctp_circ/

lolli A B)
42 -> ofctp_base (clam/app M N) B

.
43 clamlin/app1 : clamlin (\x. N x)
44 -> clamlin (\x. clam/app M (N x)

).
45 clamlin/app2 : clamlin (\x. M x)
46 -> clamlin (\x. clam/app (M x) N

).
47

48 ofctp_base/let_unit : ofctp_base N C
49 -> ofctp_base M ctp_base/

one
50 -> ofctp_base (clam/

let_unit M N) C.
51 clamlin/let_unit1 : clamlin (\x. M x)
52 -> clamlin (\x. clam/

let_unit (M x) N).
53 clamlin/let_unit2 : clamlin (\x. N x)

54 -> clamlin (\x. clam/
let_unit M (N x)).

55

56 ofctp_base/let_pair : ({x : clam}
clamlin (\y. N x y))

57 -> ({y : clam} clamlin (\
x. N x y))

58 -> ({x : clam} ofctp_base
x A

59 -> {y : clam}
ofctp_base y B

60 -> ofctp_base (N x y)
C)

61 -> ofctp_base M (ctp_base
/times A B)

62 -> ofctp_base (clam/
let_pair M (\x. \y. N
x y)) C.

63 clamlin/let_pair1 : clamlin (\z. M z)
64 -> clamlin (\z. clam/

let_pair (M z) (\x. \y.
N x y)).

65 clamlin/let_pair2 : ({x : clam} {y :
clam} clamlin (\z. N z x y))

66 -> clamlin (\z. clam/
let_pair M (\x. \y. N z
x y)).

5 Treatment of Terms, Typing, and Linearity
First, we model the terms and types of Structural Proto-Quipper
nearly identically to Proto-Quipper, save for the difference in cir-
cuits expressed above. The types are as follows, and are identical
to those found in PQ:

𝐴, 𝐵 ::= qubit | 1 | bool | 𝐴 ⊗ 𝐵 | 𝐴 ⊸ 𝐵 |!𝐴 | Circ(𝑇,𝑈 ) .
However, for terms, we express circuits differently. Instead of

as in PQ where they are expressed as triples (𝑡,𝐶, 𝑎), as explained
previously, we choose to represent them as tuples (𝐶,𝑢) where𝐶 is
a circuit lambda from the circuit level and 𝑢 is a term-level function
modelling its outputs. This will be evident in its typing rule.

𝑎, 𝑏, 𝑐 ::= 𝑥 | 𝑞 | (𝐶,𝑢) | True | False | ⟨𝑎, 𝑏⟩ | ∗ | 𝑎𝑏 | 𝜆𝑥.𝑎 |

𝑟𝑒𝑣 | 𝑢𝑛𝑏𝑜𝑥 | 𝑏𝑜𝑥𝑇 | if 𝑎 then 𝑏 else 𝑐 | let ∗ = 𝑎 in 𝑏 |
let ⟨𝑥,𝑦⟩ = 𝑎 in 𝑏.

We compare the typing judgments in Proto-Quipper (indicated
in round parentheses), assuming a linear logic, to those in Struc-
tural Proto-Quipper [indicated in square parentheses], assuming a
structural logic supported by our linear predicate(s). First, we note
that a reusable resource (indicated with an exclamation mark in the
language) is always a sufficient condition for the linearity predicate,
as in the following rule

lin (𝑥 :!𝐵; Γ, 𝑥 :!𝐵 ⊨ 𝑎 : 𝐴) [lin!]

Now, the axiom rule for classical resources below states that
given a variable of type 𝐴 where 𝐴 is a subtype of type 𝐵, the same
variable is of type 𝐵 as well. Further, we have that a variable is
always used linearly in such a judgment.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Gross

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝐴 <: 𝐵
!Δ, 𝑥 : 𝐴; ∅ ⊢ 𝑥 : 𝐵

(𝑎𝑥𝑐 )
𝐴 <: 𝐵

Γ, 𝑥 : 𝐴 ⊨ 𝑥 : 𝐵
[𝑎𝑥𝑐 ]

lin (𝑥 : 𝐴; Γ, 𝑥 : 𝐴 ⊨[𝑎𝑥𝑐 ] 𝑏 : 𝐵) [lin/axc]

The axiom rule for qubits is much simpler, and we note that said
quantum variable is used linearly in the typing judgment.

!Δ; {𝑞} ⊢ 𝑞 : qubit
(𝑎𝑥𝑞)

Γ; {𝑞} ⊨ 𝑞 : qubit
[𝑎𝑥𝑞]

lin/q (𝑞; Γ, {𝑞} ⊨[𝑎𝑥𝑞 ] 𝑞 : qubit) [lin/q/axq]

The three constant functions in Proto-Quipper (boxT,unbox,rev)
have defined types as follows, with typing through subtyping.

𝐴𝑏𝑜𝑥 (𝑇,𝑈 ) =!(𝑇 ⊸ 𝑈 ) ⊸ !Circ(𝑇,𝑈 )

𝐴unbox (𝑇,𝑈 ) = Circ(𝑇,𝑈 ) ⊸!(𝑇 ⊸ 𝑈 )

𝐴𝑟𝑒𝑣 (𝑇,𝑈 ) = Circ(𝑇,𝑈 ) ⊸! Circ(𝑈 ,𝑇 )

!𝐴𝑐 (𝑇,𝑈 ) <: 𝐵
!Δ; ∅ ⊢ 𝑐 : 𝐵 (𝑐𝑠𝑡)

The rule is the same in SQP, with no associated linearity predi-
cate.

!𝐴𝐶 (𝑇,𝑈 <: 𝐵)
Γ ⊨ 𝑐 : 𝐵

[𝑐𝑠𝑡]
The unit is typed with no linear resources.

!Δ; ∅ ⊢ ∗ :!𝑛1 (∗𝑖 ) Γ ⊨ ∗ :!𝑛1 [∗𝑖 ]

We have two lambda rules, deciding whether or not the ab-
straction can be used non-linearly. Since do not want to allow any
pre-existing linear resources to be used under the bang, there is no
linearity rule for the second.

Γ, 𝑥 : 𝐴;𝑄 ⊢ 𝑏 : 𝐵
Γ;𝑄 ⊢ 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵

(𝜆1)

Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵 lin (𝑥 : 𝐴; Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵)
Γ ⊨ 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵

[𝜆1]

lin (𝑦 : 𝐶; Γ, 𝑦 : 𝐶, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵)
lin (𝑦 : 𝐶; Γ, 𝑦 : 𝐶 ⊨[𝜆1 ] 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵) [lin/𝜆1]

lin/q (𝑞; Γ, 𝑥 : 𝐴; {𝑞} ⊨ 𝑏 : 𝐵)
lin/q (𝑞; Γ; {𝑞} ⊨[𝜆1 ] 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵) [lin/q/𝜆1]

!Δ, 𝑥 : 𝐴; ∅ ⊢ 𝑏 : 𝐵
!Δ; ∅ ⊢ 𝜆𝑥.𝑏 :!𝑛+1 (𝐴 ⊸ 𝐵)

(𝜆2)

Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵 lin (𝑥 : 𝐴; Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵)
Γ ⊨ 𝜆𝑥.𝑏 :!𝑛+1 (𝐴 ⊸ 𝐵)

[𝜆2]

In the following application rule for SPQ, we can pass on a
linearity predicate from either of the two assumptions.

Γ1, !Δ;𝑄1 ⊢ 𝑐 : 𝐴 ⊸ 𝐵 Γ2, !Δ;𝑄2 ⊢ 𝑎 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ 𝑐𝑎 : 𝐵

(𝑎𝑝𝑝)

Γ ⊨ 𝑐 : 𝐴 ⊸ 𝐵 Γ ⊨ 𝑎 : 𝐴
Γ ⊨ 𝑐𝑎 : 𝐵

[𝑎𝑝𝑝]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑐 : 𝐴 ⊸ 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/app1]

lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/q/app2]

lin (𝑞; Γ, 𝑥 : 𝐶 ⊨ 𝑐 : 𝐴 ⊸ 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/app1]

lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/q/app2]

This is also true for the tensor introduction rule.

Γ1, !Δ;𝑄1 ⊢ 𝑎 :!𝑛𝐴 Γ2, !Δ;𝑄2 ⊢ 𝑏 :!𝑛𝐵
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) (⊗𝑖 )

Γ ⊨ 𝑎 :!𝑛𝐴 Γ ⊨ 𝑏 :!𝑛𝐵
Γ ⊨ ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [⊗𝑖 ]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/ ⊗ 1]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑏 : 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/ ⊗ 2]

lin/q (𝑞; Γ, {𝑞} : 𝐶 ⊨ 𝑎 : 𝐴)
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/q/ ⊗ 1]

lin/q (𝑞; Γ, {𝑞} ⊨ 𝑏 : 𝐵)
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/q/ ⊗ 2]

But the tensor elimination rule is more similar to our lambda
rules, as we must ensure linearity of both bound variables.

Γ1, !Δ;𝑄1 ⊢ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2) Γ2, !Δ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2;𝑄2 ⊢ 𝑎 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴

(⊗𝑒 )

Γ ⊨ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2)
Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴
lin (𝑥 :!𝑛𝐵1; Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴)
lin (𝑦 :!𝑛𝐵2; Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴)

Γ ⊨ let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴
[⊗𝑒 ]

lin (𝑧 : 𝐶; Γ, 𝑧 : 𝐶 ⊨ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2))
lin (𝑧 : 𝐶; Γ, 𝑧 : 𝐶 ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin/ ⊗ 1]

lin/q (𝑞; Γ, {𝑞} ⊨ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2))
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin/q/ ⊗ 1]

lin (𝑧 : 𝐶; Γ, 𝑧 : 𝐶, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴)
lin/(𝑧 : 𝐶; Γ, 𝑧 : 𝐶 ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin ⊗ 2]

lin/q (𝑞; Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2; {𝑞} ⊨ 𝑎 : 𝐴)
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin/q/ ⊗ 2]

For unit elimination, we have (unsurprisingly)
6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Structural Proto-Quipper : Mechanization of a Linear Quantum Programming Language in a Structural Setting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Γ1, !Δ;𝑄1 ⊢ 𝑏 :!𝑛1 Γ2, !Δ;𝑄2 ⊢ 𝑎 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ let ∗ = 𝑏 in 𝑎 : 𝐴

(∗e)

Γ ⊨ 𝑏 :!𝑛1 Γ ⊨ 𝑎 : 𝐴
Γ ⊨ let ∗ = 𝑏 in 𝑎 : 𝐴

[∗e]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑏 : 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/*1]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑏 : 𝐵)
lin/q (𝑞; Γ; {𝑞} ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/q/*1]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/*2]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑎 : 𝐴)
lin/q (𝑞; Γ; {𝑞} ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/q/*2]

The booleans are typed as expected, relying on no linear re-
sources so there are no associated linearity predicates.

!Δ; ∅ ⊢ True :!𝑛bool (⊤) !Δ; ∅ ⊢ False :!𝑛bool (⊥)

Γ ⊨ True :!𝑛bool [⊤] Γ ⊨ False :!𝑛bool [⊥]
Further, although the [𝑖 𝑓 ] rule has three variables, we check

linearity in the condition 𝑏 or in both the consequences 𝑎1, 𝑎2, as
we do not want to lose linearity (say) if we checked only that a
variable 𝑥 was used linearly in the truth branch but the false branch
executed.

Γ1, !Δ;𝑄1 ⊢ 𝑏 : bool Γ2, !Δ;𝑄2 ⊢ 𝑎1 : 𝐴 Γ2, !Δ;𝑄2 ⊢ 𝑎2 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ if 𝑏 then 𝑎1 else 𝑎2 : 𝐴

(𝑖 𝑓 )

Γ ⊨ 𝑏 : bool Γ ⊨ 𝑎1 : 𝐴 Γ ⊨ 𝑎2 : 𝐴
Γ ⊨ if 𝑏 then 𝑎1 else 𝑎2 : 𝐴

[𝑖 𝑓 ]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑏 : bool)
lin (𝑥 : 𝐶, Γ, 𝑥 : 𝐶 ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/if1]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑏 : bool)
lin/q (𝑞, Γ; {𝑞} ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/q/if1]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎1 : 𝐴) lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎2 : 𝐴)
lin (𝑥 : 𝐶, Γ, 𝑥 : 𝐶 ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/if2]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑎1 : 𝐴) lin/q (𝑞; Γ; {𝑞} ⊨ 𝑎2 : 𝐴)
lin/q (𝑞, Γ; {𝑞} ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/q/if1]

Lastly, we model circuits differently than in Proto-Quipper. Be-
low is the rule in PQ for typing circuits. Here, 𝑡 of type 𝑇 and 𝑎

of type 𝑈 can be thought of as the inputs and the outputs (up to
reduction), respectively, of a circuit 𝐶 from a countable set C of
circuit constants. These circuits are treated abstractly[11].

𝑄1 ⊢ 𝑡 : 𝑇 !Δ;𝑄2 ⊢ 𝑎 : 𝑈 In(𝐶) = 𝑄1 Out(𝐶) = 𝑄2
!Δ; ∅ ⊢ (𝑡,𝐶, 𝑎) :!𝑛Circ(𝑇,𝑈 ) (𝑐𝑖𝑟𝑐)

Given that in SQP, we are able to treat circuits as actual functions,
our typing rule argues that, at the term level, a circuit tuple (𝐶,𝑢) is

of type Circ(𝑇,𝑈 ) if 𝐶 is of type 𝑇 ′ ⇁ 𝑈 ′ and 𝑢 is of type𝑈 ⊸ 𝑈

where 𝑇 ′ as a base type in the circuit level is equivalent to 𝑇 as a
type in the term level (and ditto for𝑈 ,𝑈 ′).

Γ |= 𝐶 :𝐶 𝑇 ′ ⇁ 𝑈 ′ Γ |= 𝑢 : 𝑈 ⊸ 𝑈 𝑇 ≡ 𝑇 ′ 𝑈 ≡ 𝑈 ′

Γ ⊨ (𝐶,𝑢) : Circ(𝑇,𝑈 )
Here is the code for typing and linearity in Beluga.

1 oft : tm -> tp -> type.
2 oftq : qtm -> qtp -> type.
3 lin : ({x : tm} oft x A -> oft (b x) B)

-> type.
4 lin/q : ({x : qv} oft (b x) B) -> type.
5

6 lin/bang : {D : ({y : tm} {ty : oft y (!
B)} oft (a y) A)} -> lin D.

7

8 oft/axc : A subtype B -> oft z A -> oft z
B.

9

10 lin/axc : lin (\x.\tx.oft/axc _ tx).
11

12 oft/axq : oft (qvar q) qubit.
13

14 oftq/axq : {q : qv} oftq (qtm/qvar q) qtm
/qubit.

15

16 lin/q/qvar : lin/q (\q. (oft/axq : oft (
qvar q) qubit)).

17

18 const_tp : const_name -> tp -> type.
19

20 const_tp/box : tp2qtp T' T -> tp2qtp U' U
-> const_tp (boxt T) ((! (T' lolli U

')) lolli (! (circ T U))).
21

22 const_tp/unbox : tp2btp T' T -> tp2btp U'
U -> const_tp unbox ((circ T U)

lolli (! (T' lolli U'))).
23

24 const_tp/rev : tp2btp T' T -> tp2btp U' U
-> const_tp rev ((circ T U) lolli (!
(circ U T))).

25

26 oft/cst : const_tp c A -> (! A) subtype B
-> oft (const c) B.

27

28 oft/unit : strip_bangs A one -> oft unit
A.

29

30 oftq/unit : oftq qtm/unit qtp/unit.
31

32 oft/lam1 : {D : ({x : tm} oft x A -> oft
(b x) B)} -> lin D -> oft (lam b) (A
lolli B).

33

34 lin/lam1 : ({x : tm} {tx : oft x A} lin
(\y.\ty.D x tx y ty)) -> lin (\y.\ty.
oft/lam1 (\x.\tx.D x tx y ty) (L y ty
)).

35

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Gross

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

36 lin/q/lam1 : ({x : tm} {tx : oft x A} lin
/q (\q. D x tx q)) -> lin/q (\q. oft/
lam1 (\x.\tx.D x tx q) (L q)).

37

38 oft/lam2 : {D : ({x : tm} oft x A -> oft
(b x) B)} -> lin D -> bang_of C (A
lolli B) -> oft (lam b) C.

39

40 oft/app : oft c (A lolli B) -> oft a A ->
oft (app c a) B.

41

42 lin/app1 : {D : {x : tm} oft x _ -> oft (
c x) (A lolli B)} -> lin D -> lin (\x
.\tx.oft/app (D x tx) _).

43

44 lin/app2 : {D : {x : tm} oft x _ -> oft (
a x) A} -> lin D -> lin (\x.\tx.oft/
app _ (D x tx)).

45

46 lin/q/app1 : {D : {q : qv} oft (c q) (A
lolli B)} -> lin/q D -> lin/q (\q.oft
/app (D q) _).

47

48 lin/q/app2 : {D : {q : qv} oft (c q) A}
-> lin/q D -> lin/q (\q.oft/app _ (D
q)).

49

50 oft/tensor_intro : oft a A -> oft b B ->
equibang AB A (A' tensor B') A' ->
equibang AB B (A' tensor B') B' ->
oft (pair a b) AB.

51

52 oftq/tensor_intro : oftq a qA -> oftq b
qB -> tp2qtp A qA -> tp2qtp B qB ->
tp2qtp (A tensor B) qAB -> oftq (qtm/
pair a b) qAB.

53

54 lin/tensor_intro1 : {D : {x : tm} oft x _
-> oft (a x) A} -> lin D -> lin (\x

.\tx.oft/tensor_intro (D x tx) _ _ _)

.
55

56 lin/tensor_intro2 : {D : {x : tm} oft x _
-> oft (b x) B} -> lin D -> lin (\x

.\tx.oft/tensor_intro _ (D x tx) _ _)

.
57

58 lin/q/tensor_intro1 : {D : {q : qv} oft (
a q) A} -> lin/q D -> lin/q (\q.oft/
tensor_intro (D q) _ _ _).

59

60 lin/q/tensor_intro2 : {D : {q : qv} oft (
b q) B} -> lin/q D -> lin/q (\q.oft/
tensor_intro _ (D q) _ _).

61

62 oft/tensor_elim : oft b B1B2 -> {D : {x :
tm} oft x B1 -> {y : tm} oft y B2 ->
oft (a x y) A} -> ({x : tm} {tx :

oft x B1} lin (D x tx)) -> ({y : tm}
{ty : oft y B2} lin (\x.\tx.D x tx y
ty)) -> equibang B1B2 B1 (B1 ' tensor
B2 ') B1' -> equibang B1B2 B2 (B1 '
tensor B2 ') B2' -> oft (let_pair b a)
A.

63

64 lin/tensor_elim2 : {D : {z : tm} oft z C
-> oft (b z) B1B2} -> lin D -> lin (\
z.\tz.oft/tensor_elim (D z tz) _ _ _
_ _).

65

66 lin/tensor_elim1 : ({x : tm} {tx : oft x
X} {y : tm} {ty : oft y Y} lin (\z.\
tz.D z tz x tx y ty)) -> lin (\z.\tz.
oft/tensor_elim _ (D z tz) (Ly z tz)
(Lx z tz) _ _).

67

68 lin/q/tensor_elim1 : ({x : tm} {tx : oft
x X} {y : tm} {ty : oft y Y} lin/q (\
q.D q x tx y ty)) -> lin/q (\q.oft/
tensor_elim _ (D q) (Ly q) (Lx q) _ _
).

69

70 lin/q/tensor_elim2 : {D : {q : qv} oft (b
q) B1B2} -> lin/q D -> lin/q (\q.oft

/tensor_elim (D q) _ _ _ _ _).
71

72 oft/let_unit : strip_bangs B one -> oft b
B -> oft a A -> oft (let_unit b a) A

.
73

74 lin/let_unit1 : {D : {x : tm} oft x C ->
oft (b x) B} -> lin D -> lin (\x.\tx.
oft/let_unit _ (D x tx) _).

75

76 lin/let_unit2 : {D : {x : tm} oft x C ->
oft (a x) A} -> lin D -> lin (\x.\tx.
oft/let_unit _ _ (D x tx)).

77

78 lin/q/let_unit1 : {D : {q : qv} oft (b q)
B} -> lin/q D -> lin/q (\q.oft/

let_unit _ (D q) _).
79

80 lin/q/let_unit2 : {D : {q : qv} oft (a q)
A} -> lin/q D -> lin/q (\q.oft/

let_unit _ _ (D q)).
81

82 oft/circ : ofctp_circ C (ctp_circ/lolli T
U) -> oft u (U lolli U) -> tp2btp T

T' -> tp2btp U U' -> oft (qcirc C u)
(circ T U).

6 Operational Semantics
To reiterate, the reason that we modify Proto-Quipper’s circuits is
to aid in the operational semantics, where Ross devotes much time
and effort to rigorously define set functions on wires – time and

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Structural Proto-Quipper : Mechanization of a Linear Quantum Programming Language in a Structural Setting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

effort increased exponentially when it comes to mechanization. We
will demonstrate how our changes avoid such labour.

First, however, we note that SPQ’s non-circuit related operational
semantics are essentially equivalent. In PQ, they define a closure
[𝐶, 𝑎] on a circuit 𝐶 from their circuit constants and 𝑎 a term. SPQ
does so with 𝐶 a circuit lambda from the circuit level and 𝑎, too, a
term. Below are the rules which are identical in PQ and SPQ.

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, 𝑎𝑏] → [𝐶′, 𝑎′𝑏] (𝑓 𝑢𝑛)

[𝐶,𝑏] → [𝐶′, 𝑏′]
[𝐶, 𝑣𝑏] → [𝐶′, 𝑣𝑏′] (𝑎𝑟𝑔)

[𝐶,𝑏] → [𝐶′, 𝑏′]
[𝐶, ⟨𝑎, 𝑏⟩] → [𝐶′, ⟨𝑎, 𝑏′⟩] (𝑟𝑖𝑔ℎ𝑡)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, ⟨𝑎, 𝑣⟩] → [𝐶′, ⟨𝑎′, 𝑣⟩] (𝑙𝑒 𝑓 𝑡)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, let ∗ = 𝑎 in 𝑏] → [𝐶′, let ∗ = 𝑎′ in 𝑏] (𝑙𝑒𝑡∗)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, let ⟨𝑥,𝑦⟩ = 𝑎 in 𝑏] → [𝐶′, let ⟨𝑥,𝑦⟩ = 𝑎′ in 𝑏] (𝑙𝑒𝑡)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, if 𝑎 then 𝑏 else 𝑐] → [𝐶′, if 𝑎′ then 𝑏 else 𝑐] (𝑐𝑜𝑛𝑑)

[𝐶, (𝜆𝑥.𝑎)𝑣] → [𝐶, 𝑎[𝑣/𝑥]] (𝛽)

[𝐶, let ∗ = ∗ in 𝑎] → [𝐶, 𝑎] (𝑢𝑛𝑖𝑡)

[𝐶, let ⟨𝑥,𝑦⟩ = ⟨𝑣,𝑤⟩ in 𝑎] → [𝐶, 𝑎[𝑣/𝑥,𝑤/𝑦]] (𝑝𝑎𝑖𝑟 )

[𝐶, if False then 𝑎 else 𝑏] → [𝐶,𝑏] (𝑖 𝑓 𝐹 )

[𝐶, if True then 𝑎 else 𝑏] → [𝐶, 𝑎] (𝑖 𝑓 𝑇 )

The circuit rule in PQ is as expected.

[𝐷, 𝑎] → [𝐷′, 𝑎′]
[𝐶, (𝑡, 𝐷, 𝑎)] → [𝐶, (𝑡, 𝐷′, 𝑎′)] (𝑐𝑖𝑟𝑐)

SQP does the same, although on circuit tuples (𝐷, 𝑎) instead.
[𝐷, 𝑎] → [𝐷′, 𝑎′]

[𝐶, (𝐷, 𝑎)] → [𝐶, (𝐷′, 𝑎′)] [𝑐𝑖𝑟𝑐]

SPQ becomes more interesting when we consider the [𝑏𝑜𝑥],
[𝑢𝑛𝑏𝑜𝑥], and [𝑟𝑒𝑣] rules. We return where we left off in our discus-
sion of the (𝑏𝑜𝑥) rule:

SpecFQ (𝑣) (𝑇 ) = 𝑡 new(FQ (𝑡)) = 𝐷

[𝐶,𝑏𝑜𝑥𝑇 (𝑣)] → [𝐶, (𝑡, 𝐷, 𝑣𝑡)]
(𝑏𝑜𝑥)

Here, 𝑆𝑝𝑒𝑐𝑋 (𝑇 ) returns an X-specimen for T, which is a quantum
data term 𝑡 that is “fresh” with respect to the quantum variables
appearing in 𝑋 . Too, new creates a new identity circuit on those
wires. SPQ accomplishes the same overarching goal through gener-
ating a new circuit explicitly, without necessitating the creation of
𝑆𝑝𝑒𝑐𝑋 (𝑇 ) or new, as the HOAS handles fresh variables.

Γ ⊨ 𝑣 : 𝑇 ⊸ 𝑈 Γ |= 𝐷 :𝐶 𝑇 ′ ⇁ 𝑈 ′ 𝑇 ≡ 𝑇 ′ 𝑈 ≡ 𝑈 ′

[𝐶,𝑏𝑜𝑥𝑇 (𝑣)] → [𝐶, (𝐷,𝑢)]
Similarly, the (𝑢𝑛𝑏𝑜𝑥) rule is difficult to encode, as has previously

been explained. 𝑏𝑖𝑛𝑑 , Append, FQ , and dom all rely on explicit
reasoning about lists.

𝑏𝑖𝑛𝑑 (𝑣,𝑢 ) = 𝔟 Append(𝐶,𝐷, 𝔟) = (𝐶′, 𝔟′ ) FQ (𝑢′ ) ⊆ dom(𝔟′ )
[𝐶, (𝑢𝑛𝑏𝑜𝑥 (𝑢,𝐷,𝑢′ ) )𝑣 ] → [𝐶′, 𝔟′ (𝑢′ ) ] (𝑢𝑛𝑏𝑜𝑥 )

Instead, SPQ utilizes the idea that circuit appending is equivalent
to function application of our circuit lambas, which is a quite elegant
solution.

[𝐶,𝑢𝑛𝑏𝑜𝑥 (𝐷,𝑢)] → [𝜆𝑥. 𝑎𝑝𝑝 𝐷 (𝑎𝑝𝑝 𝐶 𝑥), 𝑢] [𝑢𝑛𝑏𝑜𝑥]

Not all of this has yet been encoded in Beluga, but it is currently
being worked on.

7 Remaining Work and Conclusion
The primary remaining task for this project is to formalize the
metatheory of Structural Proto-Quipper (SPQ). Two key proofs
need to be encoded in Beluga’s computational layer using the Curry-
Howard Isomorphism: progress and type preservation.

Progress asserts that a well-typed term is either a value or can
take a step further in execution. Type preservation guarantees that
if a term takes a step, it remains well-typed [8]. These properties are
fundamental safety guarantees in Proto-Quipper and are proven
for typed closures of the form:

Γ;𝑄 ⊢ [𝐶, 𝑎] : 𝐴, (𝑄 ′ | 𝑄 ′′)
Here, Γ and 𝑄 represent linear and quantum contexts, [𝐶, 𝑎]

denotes a closure, Γ;𝑄 ⊢ 𝑎 : 𝐴 is a valid typing judgment, 𝑄 ′

represents the inputs to 𝐶 , and 𝑄,𝑄 ′′ are the outputs of 𝐶 . At
present, we lack a clear representation of these concepts in SPQ.
Should no direct mapping exist, significant effort will be required
to conceptualize how to formulate progress and type preservation
proofs for SPQ. In their absence, the work remains incomplete.

Another critical avenue is proving equivalence between the
mechanization of a language and the language itself. However,
since SPQ operates at the circuit level, which differs substantially
from Proto-Quipper, reasoning about such equivalence poses a chal-
lenge. It is uncertain what form this equivalence would take, or
even if it is achievable.

Additionally, as this project serves as a proof-of-concept for
Crary and Sano et al.’s linearity predicate technique, we are inter-
ested in applying it to other frameworks. Among a family of Proto-
Quipper-adjacent languages, one promising candidate is Proto-
Quipper-Dyn [4]. This language introduces dynamic lifting, allow-
ing outputs of quantum circuits to influence further circuit genera-
tion. Mechanizing Proto-Quipper-Dyn with the linearity predicate
technique could provide significant insights.

In conclusion, we have demonstrated the potential of using a
linearity predicate to replicate linearity within a Higher-Order
Abstract Syntax (HOAS) system. This work introduced a structural
variant of a quantum programming language grounded in linear
logic, optimized for mechanization. We presented the typing rules
and operational semantics for SPQ and believe strongly in the

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Gross

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

potential of this technique. Even on a small scale, it has the power
to significantly simplify the verification of quantum algorithms for
researchers. We differ from Mahmoud et al.[9] in that we do so
exclusively within the HOAS.

As much of this research is still taking place, certain elements
of this report may be amended in the next months. We hope this
provides an overview of the project as it stands right now.

8 Acknowledgments
I extend my heartfelt gratitude to Brigitte Pientka, Ryan Kavanagh,
and Chuta Sano for their invaluable mentorship and guidance
throughout this research process. To Professor Kavanagh, thank
you for the privilege of being your first student. I have no doubt
that you will excel as an advisor to many more in the future. To
Chuta, I deeply appreciate your unwavering assistance in helping
me navigate the intricacies of Beluga. To Professor Pientka, it has
been an absolute pleasure to have you supervise my honors re-
search project and to work as a TA for your undergraduate class.
The experiences of researching and teaching under your guidance
will remain pivotal in my academic journey.

We would also like to acknowledge the support provided by
McGill University, UQÀM and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References
[1] Karl Crary. 2010. Higher-order representation of substructural logics. SIGPLAN

Not. 45, 9 (sep 2010), 131–142. https://doi.org/10.1145/1932681.1863565
[2] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. 1979. Social processes

and proofs of theorems and programs. Commun. ACM 22, 5 (May 1979), 271–280.
https://doi.org/10.1145/359104.359106

[3] Richard P. Feynman. 1982. Simulating physics with computers. International
Journal of Theoretical Physics 21, 6 (1982), 467–488. https://doi.org/10.1007/
BF02650179

[4] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. 2023. Proto-Quipper
with Dynamic Lifting. Proc. ACM Program. Lang. 7, POPL, Article 11 (Jan. 2023),
26 pages. https://doi.org/10.1145/3571204

[5] SIMON J. GAY. 2006. Quantum programming languages: survey and
bibliography: MSCS. Mathematical Structures in Computer Science 16,
4 (08 2006), 581–600. https://proxy.library.mcgill.ca/login?url=https:
//www.proquest.com/scholarly-journals/quantum-programming-languages-
survey-bibliography/docview/217854566/se-2 Copyright - 2006 Cambridge
University Press; Last updated - 2023-11-29.

[6] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987),
1–101. https://doi.org/10.1016/0304-3975(87)90045-4

[7] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoît Valiron. 2013. Quipper: a scalable quantum programming language. ACM
SIGPLAN Notices 48, 6 (June 2013), 333–342. https://doi.org/10.1145/2499370.
2462177

[8] Robert Harper. 2021. Progress: A Fundamental Property of Type Systems. https:
//www.cs.cmu.edu/~fp/courses/15814-f21/lectures/08-progress.pdf. Lecture
notes for course 15-814 at Carnegie Mellon University, Fall 2021.

[9] Mohamed Yousri Mahmoud and Amy P. Felty. 2019. Formalization of Metatheory
of the Quipper Quantum Programming Language in a Linear Logic. Journal of
Automated Reasoning 63, 4 (2019), 967–1002. https://doi.org/10.1007/s10817-
019-09527-x

[10] Vaughan R Pratt. 1993. Linear logic for generalized quantum mechanics. In
ProceedingsWorkshop on Physics and Computation, Dallas, IEEE Computer Society.

[11] Neil Julien Ross. 2015. Algebraic and Logical Methods in Quantum Computation.
Ph. D. Dissertation. Dalhousie University.

[12] Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. 2023. Mechanizing Session-
Types using a Structural View: Enforcing Linearity without Linearity. Proc.
ACM Program. Lang. 7, OOPSLA2, Article 235 (oct 2023), 26 pages. https:
//doi.org/10.1145/3622810

[13] Peter Selinger. 2004. A Brief Survey of Quantum Programming Languages. In
Proceedings of the 7th International Symposium on Functional and Logic Program-
ming, FLOPS 2004, Nara, Japan (Lecture Notes in Computer Science, Vol. 2998).
Springer, 1–6. https://doi.org/10.1007/978-3-540-24754-8_1

[14] Peter Selinger and Benoît Valiron. 2009. Quantum Lambda Calculus. Cambridge
University Press, 135–172.

[15] Philip Wadler. 2012. Propositions as sessions. SIGPLAN Not. 47, 9 (Sept. 2012),
273–286. https://doi.org/10.1145/2398856.2364568

10

https://doi.org/10.1145/1932681.1863565
https://doi.org/10.1145/359104.359106
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1145/3571204
https://proxy.library.mcgill.ca/login?url=https://www.proquest.com/scholarly-journals/quantum-programming-languages-survey-bibliography/docview/217854566/se-2
https://proxy.library.mcgill.ca/login?url=https://www.proquest.com/scholarly-journals/quantum-programming-languages-survey-bibliography/docview/217854566/se-2
https://proxy.library.mcgill.ca/login?url=https://www.proquest.com/scholarly-journals/quantum-programming-languages-survey-bibliography/docview/217854566/se-2
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/08-progress.pdf
https://www.cs.cmu.edu/~fp/courses/15814-f21/lectures/08-progress.pdf
https://doi.org/10.1007/s10817-019-09527-x
https://doi.org/10.1007/s10817-019-09527-x
https://doi.org/10.1145/3622810
https://doi.org/10.1145/3622810
https://doi.org/10.1007/978-3-540-24754-8_1
https://doi.org/10.1145/2398856.2364568

	Abstract
	1 Introduction
	2 Introduction to Linearity and Quantum Programming
	3 Linearity Predicate
	4 Treatment of Circuits
	5 Treatment of Terms, Typing, and Linearity
	6 Operational Semantics
	7 Remaining Work and Conclusion
	8 Acknowledgments
	References

