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Structural Proto-Quipper: Mechanization of a LinearQuantum
Programming Language in a Structural Setting
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Abstract
This project aims to develop a general technique for mechaniz-
ing quantum programming languages that rely on linear logic for
resource management, such as the handling of qubits. The main
challenge is integrating linear logic, which enforces constraints like
one-time use of resources, into systems built on structural logic
frameworks, like the Higher Order Abstract Syntax. To address
this, the project adopts the strategy of "enforcing linearity with-
out linearity." As a proof of concept, we mechanize and improve
Proto-Quipper, a quantum programming language used to gen-
erate circuits, utilizing Beluga, a tool for formal reasoning about
systems. The approach is grounded in Crary’s method for repre-
senting Girard’s linear logic in Twelf, and introduces two linearity
predicates that ensure classical and quantum variables are used
linearly within typing judgments. This technique leverages Bel-
uga’s HOAS to streamline proofs and avoids the need for external
extensions, unlike prior work by Mahmoud et al., who mechanized
Proto-Quipper using a linear extension of Hybrid in Coq. Further,
we optimize Proto-Quipper’s treatment of circuits for mechaniza-
tion by treating them as functions in a linear lambda calculus. While
the mechanization of Proto-Quipper is successful, demonstrating
the soundness of the approach, proofs for key properties such as
subject reduction and progress are still under development. Future
efforts will focus on completing these proofs and expanding the
method to more complex quantum programming languages, such
as Proto-Quipper-Dyn, which introduces dynamic lifting.

CCS Concepts
• Theory of computation→ Logic and verification; Quantum
computation theory.

Keywords
linear logic, quantum lambda calculus, verification, logical frame-
work, Proto-Quipper, linear predicate
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1 Introduction
The concept of quantum computation is relatively new, with Paul
Benioff and Richard Feynman first proposing in 1982 that quan-
tum systems could be used to perform computations. Feynman, in
particular, argued that it was “impossible to represent the results
of quantum mechanics with a classical universal device.”[3] He
envisioned quantum computers as tools for simulating quantum
systems more efficiently than classical computers, which are limited
by the prohibitive cost of modeling quantum processes[5][13].

In the 1990s, Peter Shor introduced algorithms to solve cryp-
tographic problems, like factoring large integers and the discrete
logarithm problem, that classical computers handle inefficiently.
Shor’s breakthrough highlighted the unique potential of quantum
computers, sparking a surge of interest in their design. However,
it wasn’t until 1996 that researchers began to discuss the need for
quantum programming languages, hindered by the lack of practi-
cal quantum hardware to support them[5]. Even today, achieving
"quantum supremacy," where quantum computers outperform clas-
sical ones on complex tasks, remains an ongoing challenge.

Gay counters criticism regarding quantum programming lan-
guages by pointing out that, in classical computing, the lack of a
solid semantic foundation in programming languages has led to
significant issues in software engineering. He argues that allow-
ing the programming cart to precede the computing horse can be
beneficial[5]. This paper aligns with that perspective, as formal veri-
fication of programming languages has also faced criticism for being
overly theoretical and detracting from practical language design[2].
However, coming together, quantum computation presents a com-
pelling case for mechanization. Quantum programs are notoriously
challenging to reason about due to the probabilistic nature of quan-
tum mechanics, along with concepts like entanglement and super-
position. Formal verification and proof assistants can play a crucial
role in rigorously proving the correctness of quantum algorithms,
thereby enhancing their reliability and effectiveness.

The primary challenge of mechanizing quantum programming
languages lies in their reliance on linear logic to model quantum
resources, specifically a linear lambda calculus with a typing system
based on Girard’s linear logic[6]. This approach stems from the
"no-cloning property," which states that it is impossible to create
perfect copies of an unknown quantum state[13].

In most encodings of linear programming languages, contexts
are treated explicitly (for example, as lists). However, this becomes
unwieldy when formalizing meta-theoretical statements, as it re-
quires managing context-dependent operations while keeping track
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of resource consumption. In the context of mechanizing quantum
programming languages, properties of bindings in the host lan-
guage using Higher Order Abstract Syntax can significantly aid
in verifying aspects like alpha equivalence and substitution lem-
mas. However, existing HOAS frameworks manage contexts in a
structural manner, which poses challenges for quantum computing
languages that necessitate linear contexts. This discrepancy means
that applying HOAS to handle quantum wires naively may not
ensure linearity, complicating the proof of crucial meta-theoretic
properties[12]. To effectively mechanize quantum programming
languages and capture the essential linearity required, advance-
ments in HOAS approaches are necessary.

In this paper, we present a use case for a novel technique that
employs higher-order abstract syntax to mechanize linear quantum
programming languages, originally proposed by Sano et al[12]. for
use in concurrent settings and adapted from work by Crary[1].
Specifically, we offer a proof-of-concept mechanization of Proto-
Quipper[11], a small circuit-building quantum programming lan-
guage based on the aforementioned quantum lambda calculus, in
Beluga, along with mechanization-facing improvements to its treat-
ment of circuits.

To that end, we introduce Structural Proto-Quipper (SPQ), noting
that its context (as in Beluga) is structural. Yet, we encode linearity
using linearity predicates on typing judgements in the language,
defining

lin (𝑥 : 𝐵; Γ, 𝑥 : 𝐵 ⊨ 𝑎 : 𝐴), lin/q (𝑞; Γ, {𝑞} ⊨ 𝑎 : 𝐴)

saying that within some typing judgment that 𝑎 is of type 𝐴, where
𝑎 depends on a variable 𝑥 or a quantum variable 𝑞, 𝑥 or 𝑞 are used
linearly. While this predicate is local to a typing judgment, by virtue
of its application each time we use typing rules that add variable or
quantum variable bindings, it is the case that SPQ operates globally
linearly, without linearity. Further work will be made in proving
something like adequacy between SPQ and PQ, although certain
key differences will make this tricky.

This is because, in Proto-Quipper, circuits are treated abstractly
as uninterpreted circuit constants coming from a countable set,
where it assumes "that there exists a constant symbol for every
possible quantum circuit."[11]. Operations on circuits, such as ap-
pending two circuits together, is interpreted as operations on lists -
the exact problem we are avoiding in this paper. Thus, SPQ amends
PQ to treat circuits as functions in a linear lambda calculus taking
and returning inputs as tuples of wires as quantum variables. We
also have a linearity predicate

clamlin (𝜆𝑞. 𝑀)

saying that a quantum variable is being used linearly in an ex-
pression.

Note that our linearity approach at the term level differs from
Sano et al. in that their linearity predicate is defined with respect
to processes themselves, not typing judgments on them[12]. This
is due to a feature of Proto-Quipper such that terms are the same
whether or not they are of a linear or non-linear type, and thus
we must type them to determine if linearity is required. There is
a simple rule saying that linearity always holds on these shared
resources. Note further that while Proto-Quipper has been mech-
anized by Mahmoud et al.[9], they did so using Hybrid, a linear

extension to Coq. Our contribution is a mechanization within the
logical framework itself.

2 Introduction to Linearity and Quantum
Programming

Linear logic is a form of substructural logic that differs from clas-
sical structural logics by omitting two key rules: contraction and
weakening. These rules, which are fundamental in traditional logics,
are generalized as follows:

Γ ⊢ 𝑡
Γ, 𝑥 ⊢ 𝑡 [Weakening-L] Γ ⊢ 𝑡

Γ ⊢ 𝑡, 𝑥 [Weakening-R]

Γ, 𝑥, 𝑥 ⊢ 𝑡
Γ, 𝑥 ⊢ 𝑡 [Contraction-L] Γ ⊢ 𝑡, 𝑡

Γ ⊢ 𝑡 [Contraction-R]

Linear logic introduces a discipline on resource management by
rejecting these rules. In particular, it does not allow assumptions
(resources) to be arbitrarily duplicated (contraction) or discarded
(weakening).

The linear lambda calculus serves as the computational counter-
part to linear logic, much like how the traditional lambda calculus
corresponds to classical structural logic. In this sense, proofs in
linear logic are represented as terms in the linear lambda calculus.

Semantically, linear logic was originally developed as a formal
system to study resource availability [6]. In this framework, propo-
sitions are treated as resources that must be consumed exactly
once—they cannot be freely duplicated (no contraction) or ignored
(no weakening). This perspective has deep connections to quantum
computing, where linear logic provides an ideal model for reasoning
about quantum systems.

More specifically, linear logic has been interpreted as a form
of quantum logic [10]. The absence of weakening mirrors the no-
cloning theorem of quantum computation, which states that arbi-
trary quantum states cannot be copied. Similarly, the absence of
contraction corresponds to the no-deletion rule, which forbids the
arbitrary erasure of quantum information.

Building on these ideas, the quantum lambda calculus [14] was
introduced as a computational model grounded in the principles
of linear logic. This work led to the development of Quipper [7], a
practical quantum programming language designed to apply formal
methods to quantum algorithm analysis.

Our focus in this project is on mechanizing Proto-Quipper, which
is “a limited (but still expressive) fragment of the Quipper language...
[designed to be] completely type-safe” [11]. Proto-Quipper retains
the resource-sensitive principles of linear logic and provides a foun-
dation for rigorous reasoning about quantum programs within a
type-theoretic framework..

3 Linearity Predicate
Our main goal is to leverage Higher Order Abstract Syntax (HOAS)
to manage contexts and variable substitutions. Our contribution,
therefore, is an encoding within the Logical Framework (LF) itself
using the technique of linearity predicates, as opposed to relying on
extended libraries, as done in previous work in the area [9]. Crary
initially envisioned such a technique to encode the linear lambda
calculus in Twelf [1]. Further work by Sano et al. [12] mechanized
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Wadler’s Classical Processes [15], a system based on linear logic,
much like Proto-Quipper.

Crary argues that designing a technique formechanizationwithin
the LF layer is worthwhile for several reasons. First, there is the
question of accessibility: do researchers engaged in formalizing
metatheory have access to tools capable of reasoning linearly, such
as Linear LF? He suggests they do not and that it is best for re-
searchers to work with the tools they already have. Second, even if
extensions for linear languages become more widely available, the
issue remains unresolved for those studying other substructural log-
ics, such as affine, strict, or modal logic. Moreover, treating contexts
explicitly for substructurality is simply not a viable option [1].

In general, the linearity predicate acts as a local well-formedness
check that forms a pseudo-context whenever a new variable is
introduced. It ensures that the new variable is used linearly, as ex-
pected, even though the actual context managed by HOAS remains
structural. For example, in Crary’s implementation in Twelf, the
lambda rule is represented as:

Γ; (Δ, 𝑥 :𝐴) ⊢ 𝑀 : 𝐵
Γ;Δ ⊢ 𝜆𝑥.𝑀 : 𝐴 ⊸ 𝐵

of/llam
: of (llam ([x] M x)) (lolli A B)
<- ({x:term} of x A -> of (M x) B)
<- linear ([x] M x).

linear/llam
: linear ([y] llam ([x] M y x))
<- ({x:term} linear ([y] M y x)).

Without delving into Twelf’s syntax, this states that a lambda
function is of type𝐴 ⊸ 𝐵 if a given variable of type𝐴, used linearly,
ensures that its body is of type 𝐵. Similarly, a linearity rule based
on this typing judgment asserts that if a variable is used linearly
within the body of a function, then it is linear within that function.
Globally, this implies that every variable in the program is used
linearly.

As with the work of Sano et al. [12], we must introduce a version
of the language to encode that operates structurally, using this
pseudo-linear context. We achieve this below, creating Structural
Proto-Quipper (SPQ). We begin with a discussion of circuits, as they
operate as a linear lambda calculus, closely resembling Crary’s
system.

4 Treatment of Circuits
The way that Proto-Quipper handles circuits is challenging for
mechanization. In the paper, they treat circuits abstractly as coming
from a countable set C of circuit constants, equipped with functions
In and Out which describe their inputs and outputs, respectively.
To do so, they assume that every possible circuit is represented as
some 𝐶 ∈ C and, at the term level, are modeled as (𝑡,𝐶, 𝑎) with
𝑡 and 𝑎 as terms themselves providing structure to these inputs
and outputs. At the type level, Proto-Quipper argues that circuit
(𝑡,𝐶, 𝑎) is of type Circ(𝑇,𝑈 ) if 𝑡 (resp. 𝑎) takes the shape of𝑇 (resp.
𝑈 ), where 𝑇 and 𝑈 are quantum data types. The typing rule is as
follows:

𝑄1 ⊢ 𝑡 : 𝑇 !Δ;𝑄2 ⊢ 𝑎 : 𝑈 In(𝐶) = 𝑄1 Out(𝐶) = 𝑄2
!Δ; ∅ ⊢ (𝑡,𝐶, 𝑎) :!𝑛Circ(𝑇,𝑈 ) (𝑐𝑖𝑟𝑐)

However, in SPQ’s structural settingwherewe let Beluga’s HOAS
handle contexts, it is impossible for us to say, without loss of gen-
erality, that some empty context in addition to the (uninterpreted)
outputs of a circuit will prove that 𝑎 is of type𝑈 .

Further, because Proto-Quipper is a circuit building language,
it also describes operations on circuits. It is the case, for example,
that Proto-Quipper is able to build up functions that are "boxed"
into circuits. In the operational semantics, this is done through
creating new circuits on free quantum wires, as below, with the
box function taking a circuit generating function to a circuit by
finding fresh variable names (Spec) and creating an identity circuit
on those wires (new).

SpecFQ (𝑣) (𝑇 ) = 𝑡 new(FQ (𝑡)) = 𝐷

[𝐶,𝑏𝑜𝑥𝑇 (𝑣)] → [𝐶, (𝑡, 𝐷, 𝑣𝑡)]
(𝑏𝑜𝑥)

Similarly, to continue building circuits, Proto-Quipper allows
us to append two circuits circuits together over bindings by first
turning one into a function, as in the rule below, with the unbox
function taking a circuit to a circuit generating function applied to
a new collection of input wires. This new circuit 𝐷 and its binding
are then tacked onto the circuit we are currently building through
the Append function.

𝑏𝑖𝑛𝑑 (𝑣,𝑢 ) = 𝔟 Append(𝐶,𝐷, 𝔟) = (𝐶′, 𝔟′ ) FQ (𝑢′ ) ⊆ dom(𝔟′ )
[𝐶, (𝑢𝑛𝑏𝑜𝑥 (𝑢,𝐷,𝑢′ ) )𝑣 ] → [𝐶′, 𝔟′ (𝑢′ ) ] (𝑢𝑛𝑏𝑜𝑥 )

In both cases, Proto-Quipper develops many tools to ensure
freshness of quantum variables and one-to-one mappings of input
wires to output wires. These tools, however, are set operations
which require reasoning about explicit lists of variables; this is
perpendicular to the goals of our research and makes proofs of
metatheoretic properties deeply challenging.

To resolve this, Structural Proto-Quipper proposes a two-level
system between circuits and their creation, i.e. between the term
level and the circuit level of our language, with circuits expressed
as functions in a linear lambda calculus on variables representing
quantum wires. We treat 𝑏𝑜𝑥𝑇 and 𝑢𝑛𝑏𝑜𝑥 as translations from
circuits to terms and vice versa.

Thus, the terms𝑤 , 𝑢 in our circuit linear lambda calculus are

𝑤,𝑢 ::=𝑞 | ∗ | ⟨𝑤,𝑢⟩ | 𝜆𝑞. 𝑤 | app𝑤 𝑢 | let ∗ = 𝑤 in 𝑢 |
let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢 | rev𝑤

where we type collections of wires as base types

𝐴𝐵, 𝐵𝐵 ::= qubit | 1 | 𝐵𝐵 ⊗ 𝐶𝐵

and circuits as reversible functions from base types to base types.

𝐶𝐶 ::= 𝐴𝐵 ⇁ 𝐵𝐵

.
The type system for our circuit level is nearly identical to Crary’s

higher order representation of the linear lambda calculus[1]. We say
that Γ |= 𝑤 : 𝐴𝐵 if𝑤 is of base type 𝐵𝐵 under the structural context
Γ. Further, we say that Γ |= 𝜆𝑞. 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵 if a circuit is of input
base type 𝐴𝐵 and output base type 𝐵𝐵 under Γ. For linearity, there
are no reusable resources and thus typing is no longer needed, so
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Figure 1: Two Levels of SPQ

clamlin (𝑞; 𝑤) says that variable 𝑞 is used linearly within term
𝑤 .

First, we have a linearity rule for variables, reading that a variable
𝑞 is linear in 𝑞

clamlin (𝑞; 𝑞) {clamlin/var}

Axiomatically, we type units as follows, with no linearity predi-
cate as no variables can be used within.

Γ |= ∗ :𝐵 1
{∗𝑖 }

For tuples of quantum variables, however, we must ensure lin-
earity in both branches as follows.

Γ |= 𝑤 :𝐵 𝐴𝐵 Γ |= 𝑢 :𝐵 𝐵𝐵

Γ |= ⟨𝑤,𝑢⟩ :𝐵 𝐴𝐵 ⊗ 𝐵𝐵
{⊗𝑖 }

clamlin (𝑞; 𝑤)
clamlin (𝑞; ⟨𝑤,𝑢⟩) {clamlin/⊗1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; ⟨𝑤,𝑢⟩) {clamlin/⊗2}

The lambda typing rule requires the argument to be used linearly
in its body. The linearity rule for lambda functions says variable
𝑞 is linear in a function if it is linear in its body. Here, the lambda
functions represent circuits in Structural Proto–Quipper. It is the
sole constructor for circuits.

Γ, 𝑞 :𝐵 𝐴𝐵 |= 𝑤 :𝐵 𝐵𝐵 clamlin (𝑞; 𝑤)
Γ |= 𝜆𝑞. 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵

{𝜆}

clamlin (𝑥 ; 𝑢)
clamlin (𝑥 ; 𝜆𝑞. 𝑢) {clamlin/𝜆}

The typing and linearity rules for applying circuits onto inputs
is similar to that for the pair, in that we must check linearity of
both the function and its input.

Γ |= 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵 Γ |= 𝑢 :𝐵 𝐵𝐵

Γ |= app 𝑤 𝑢 :𝐵 𝐵𝐵
{𝑎𝑝𝑝}

clamlin (𝑞; 𝑤)
clamlin (𝑞; app 𝑤 𝑢) {clamlin/app1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; app 𝑤 𝑢) {clamlin/app2}

.
The same goes for unit elimination.

Γ |= 𝑤 :𝐵 1 Γ |= 𝑢 :𝐵 𝐴𝐵

Γ |= let ∗ = 𝑤 in 𝑢 :𝐵 𝐴𝐵
{∗𝑒 }

clamlin (𝑞; 𝑤)
clamlin (𝑞; let ∗ = 𝑤 in 𝑢) {clamlin/letunit1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; let ∗ = 𝑤 in 𝑢) {clamlin/letunit2}

And for the tensor elimination, as with the lambda typing rule,
we must ensure linearity of the variables we use for substitution.
Here,

Γ |= 𝑤 :𝐵 𝐴𝐵 ⊗ 𝐵𝐵
Γ, 𝑞 :𝐵 𝐴𝐵, 𝑢 :𝐵 𝐵𝐵 |= 𝑢 :𝐵 𝐷𝐵

clamlin (𝑞; 𝑢)
clamlin (𝑣 ; 𝑢)
Γ |= let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢 :𝐵 𝐷𝐵

clamlin (𝑞; 𝑤)
clamlin (𝑞; let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢) {clamlin/letpair1}

clamlin (𝑞; 𝑢)
clamlin (𝑞; let ⟨𝑞, 𝑣⟩ = 𝑤 in 𝑢) {clamlin/letpair2}

Lastly, reversing a circuit is equivalent to swapping the shape
of its inputs and outputs, as below. This is the main novelty ver-
sus Crary’s paper. Linearity of a variable within a circuit implies
linearity of a c variable within its reverse.

Γ |= 𝑤 :𝐶 𝐴𝐵 ⇁ 𝐵𝐵

Γ |= rev 𝑤 :𝐶 𝐵𝐵 ⇁ 𝐴𝐵
{𝑟𝑒𝑣}

clamlin (𝑞; 𝑤)
clamlin (𝑞; rev 𝑤) {clamlin/rev}

Below is our encoding of the linear lambda calculus for circuits
in the LF layer of Beluga. It gives a good idea of how linearity and
typing are intertwined.

1 clam : type.
2 clam/unit : clam.
3 clam/pair : clam -> clam -> clam.
4 clam/lam : (clam -> clam) -> clam.
5 clam/app : clam -> clam -> clam.
6 clam/let_unit : clam -> clam -> clam.
7 clam/let_pair : (clam -> clam -> clam

) -> clam -> clam.
8 clam/rev : clam -> clam.
9

10 ctp_base : type.
11 ctp_base/qubit : ctp_base.
12 ctp_base/one : ctp_base.
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13 ctp_base/times : ctp_base -> ctp_base
-> ctp_base.

14

15 ctp_circ : type.
16 ctp_circ/lolli : ctp_base -> ctp_base

-> ctp_circ.
17

18 ofctp_base : clam -> ctp_base -> type.
19 ofctp_circ : clam -> ctp_circ -> type.
20 clamlin : (clam -> clam) -> type.
21

22 clamlin/var : clamlin (\x. x).
23

24 ofctp_base/unit : ofctp_base clam/unit
ctp_base/one.

25

26 ofctp_base/pair : ofctp_base a A ->
ofctp_base b B

27 -> ofctp_base (clam/pair a b)
(ctp_base/times A B).

28 clamlin/pair1 : clamlin (\x. M x) ->
clamlin (\x. clam/pair (M x) N).

29 clamlin/pair2 : clamlin (\x. N x) ->
clamlin (\x. clam/pair M (N x)).

30

31 ofctp_circ/lam : clamlin (\x. M x)
32 -> ({x : clam} ofctp_base x A

-> ofctp_base (M x) B)
33 -> ofctp_circ (clam/lam (\x. M

x)) (ctp_circ/lolli A B).
34 clamlin/lam : ({x : clam} clamlin (\y

. M y x))
35 -> clamlin (\y. clam/lam (\x. M y

x)).
36

37 ofctp_circ/rev : ofctp_circ M (ctp_circ
/lolli A B)

38 -> ofctp_circ (clam/rev M) (
ctp_circ/times B A).

39

40 ofctp_base/app : ofctp_base N A
41 -> ofctp_circ M (ctp_circ/

lolli A B)
42 -> ofctp_base (clam/app M N) B

.
43 clamlin/app1 : clamlin (\x. N x)
44 -> clamlin (\x. clam/app M (N x)

).
45 clamlin/app2 : clamlin (\x. M x)
46 -> clamlin (\x. clam/app (M x) N

).
47

48 ofctp_base/let_unit : ofctp_base N C
49 -> ofctp_base M ctp_base/

one
50 -> ofctp_base (clam/

let_unit M N) C.
51 clamlin/let_unit1 : clamlin (\x. M x)
52 -> clamlin (\x. clam/

let_unit (M x) N).
53 clamlin/let_unit2 : clamlin (\x. N x)

54 -> clamlin (\x. clam/
let_unit M (N x)).

55

56 ofctp_base/let_pair : ({x : clam}
clamlin (\y. N x y))

57 -> ({y : clam} clamlin (\
x. N x y))

58 -> ({x : clam} ofctp_base
x A

59 -> {y : clam}
ofctp_base y B

60 -> ofctp_base (N x y)
C)

61 -> ofctp_base M (ctp_base
/times A B)

62 -> ofctp_base (clam/
let_pair M (\x. \y. N
x y)) C.

63 clamlin/let_pair1 : clamlin (\z. M z)
64 -> clamlin (\z. clam/

let_pair (M z) (\x. \y.
N x y)).

65 clamlin/let_pair2 : ({x : clam} {y :
clam} clamlin (\z. N z x y))

66 -> clamlin (\z. clam/
let_pair M (\x. \y. N z
x y)).

5 Treatment of Terms, Typing, and Linearity
First, we model the terms and types of Structural Proto-Quipper
nearly identically to Proto-Quipper, save for the difference in cir-
cuits expressed above. The types are as follows, and are identical
to those found in PQ:

𝐴, 𝐵 ::= qubit | 1 | bool | 𝐴 ⊗ 𝐵 | 𝐴 ⊸ 𝐵 |!𝐴 | Circ(𝑇,𝑈 ) .
However, for terms, we express circuits differently. Instead of

as in PQ where they are expressed as triples (𝑡,𝐶, 𝑎), as explained
previously, we choose to represent them as tuples (𝐶,𝑢) where𝐶 is
a circuit lambda from the circuit level and 𝑢 is a term-level function
modelling its outputs. This will be evident in its typing rule.

𝑎, 𝑏, 𝑐 ::= 𝑥 | 𝑞 | (𝐶,𝑢) | True | False | ⟨𝑎, 𝑏⟩ | ∗ | 𝑎𝑏 | 𝜆𝑥.𝑎 |

𝑟𝑒𝑣 | 𝑢𝑛𝑏𝑜𝑥 | 𝑏𝑜𝑥𝑇 | if 𝑎 then 𝑏 else 𝑐 | let ∗ = 𝑎 in 𝑏 |
let ⟨𝑥,𝑦⟩ = 𝑎 in 𝑏.

We compare the typing judgments in Proto-Quipper (indicated
in round parentheses), assuming a linear logic, to those in Struc-
tural Proto-Quipper [indicated in square parentheses], assuming a
structural logic supported by our linear predicate(s). First, we note
that a reusable resource (indicated with an exclamation mark in the
language) is always a sufficient condition for the linearity predicate,
as in the following rule

lin (𝑥 :!𝐵; Γ, 𝑥 :!𝐵 ⊨ 𝑎 : 𝐴) [lin!]

Now, the axiom rule for classical resources below states that
given a variable of type 𝐴 where 𝐴 is a subtype of type 𝐵, the same
variable is of type 𝐵 as well. Further, we have that a variable is
always used linearly in such a judgment.
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𝐴 <: 𝐵
!Δ, 𝑥 : 𝐴; ∅ ⊢ 𝑥 : 𝐵

(𝑎𝑥𝑐 )
𝐴 <: 𝐵

Γ, 𝑥 : 𝐴 ⊨ 𝑥 : 𝐵
[𝑎𝑥𝑐 ]

lin (𝑥 : 𝐴; Γ, 𝑥 : 𝐴 ⊨[𝑎𝑥𝑐 ] 𝑏 : 𝐵) [lin/axc]

The axiom rule for qubits is much simpler, and we note that said
quantum variable is used linearly in the typing judgment.

!Δ; {𝑞} ⊢ 𝑞 : qubit
(𝑎𝑥𝑞)

Γ; {𝑞} ⊨ 𝑞 : qubit
[𝑎𝑥𝑞]

lin/q (𝑞; Γ, {𝑞} ⊨[𝑎𝑥𝑞 ] 𝑞 : qubit) [lin/q/axq]

The three constant functions in Proto-Quipper (boxT,unbox,rev)
have defined types as follows, with typing through subtyping.

𝐴𝑏𝑜𝑥 (𝑇,𝑈 ) =!(𝑇 ⊸ 𝑈 ) ⊸ !Circ(𝑇,𝑈 )

𝐴unbox (𝑇,𝑈 ) = Circ(𝑇,𝑈 ) ⊸!(𝑇 ⊸ 𝑈 )

𝐴𝑟𝑒𝑣 (𝑇,𝑈 ) = Circ(𝑇,𝑈 ) ⊸! Circ(𝑈 ,𝑇 )

!𝐴𝑐 (𝑇,𝑈 ) <: 𝐵
!Δ; ∅ ⊢ 𝑐 : 𝐵 (𝑐𝑠𝑡)

The rule is the same in SQP, with no associated linearity predi-
cate.

!𝐴𝐶 (𝑇,𝑈 <: 𝐵)
Γ ⊨ 𝑐 : 𝐵

[𝑐𝑠𝑡]
The unit is typed with no linear resources.

!Δ; ∅ ⊢ ∗ :!𝑛1 (∗𝑖 ) Γ ⊨ ∗ :!𝑛1 [∗𝑖 ]

We have two lambda rules, deciding whether or not the ab-
straction can be used non-linearly. Since do not want to allow any
pre-existing linear resources to be used under the bang, there is no
linearity rule for the second.

Γ, 𝑥 : 𝐴;𝑄 ⊢ 𝑏 : 𝐵
Γ;𝑄 ⊢ 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵

(𝜆1)

Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵 lin (𝑥 : 𝐴; Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵)
Γ ⊨ 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵

[𝜆1]

lin (𝑦 : 𝐶; Γ, 𝑦 : 𝐶, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵)
lin (𝑦 : 𝐶; Γ, 𝑦 : 𝐶 ⊨[𝜆1 ] 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵) [lin/𝜆1]

lin/q (𝑞; Γ, 𝑥 : 𝐴; {𝑞} ⊨ 𝑏 : 𝐵)
lin/q (𝑞; Γ; {𝑞} ⊨[𝜆1 ] 𝜆𝑥.𝑏 : 𝐴 ⊸ 𝐵) [lin/q/𝜆1]

!Δ, 𝑥 : 𝐴; ∅ ⊢ 𝑏 : 𝐵
!Δ; ∅ ⊢ 𝜆𝑥.𝑏 :!𝑛+1 (𝐴 ⊸ 𝐵)

(𝜆2)

Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵 lin (𝑥 : 𝐴; Γ, 𝑥 : 𝐴 ⊨ 𝑏 : 𝐵)
Γ ⊨ 𝜆𝑥.𝑏 :!𝑛+1 (𝐴 ⊸ 𝐵)

[𝜆2]

In the following application rule for SPQ, we can pass on a
linearity predicate from either of the two assumptions.

Γ1, !Δ;𝑄1 ⊢ 𝑐 : 𝐴 ⊸ 𝐵 Γ2, !Δ;𝑄2 ⊢ 𝑎 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ 𝑐𝑎 : 𝐵

(𝑎𝑝𝑝)

Γ ⊨ 𝑐 : 𝐴 ⊸ 𝐵 Γ ⊨ 𝑎 : 𝐴
Γ ⊨ 𝑐𝑎 : 𝐵

[𝑎𝑝𝑝]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑐 : 𝐴 ⊸ 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/app1]

lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/q/app2]

lin (𝑞; Γ, 𝑥 : 𝐶 ⊨ 𝑐 : 𝐴 ⊸ 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/app1]

lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin/q (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[𝑎𝑝𝑝 ] 𝑐𝑎 : 𝐵) [lin/q/app2]

This is also true for the tensor introduction rule.

Γ1, !Δ;𝑄1 ⊢ 𝑎 :!𝑛𝐴 Γ2, !Δ;𝑄2 ⊢ 𝑏 :!𝑛𝐵
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) (⊗𝑖 )

Γ ⊨ 𝑎 :!𝑛𝐴 Γ ⊨ 𝑏 :!𝑛𝐵
Γ ⊨ ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [⊗𝑖 ]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/ ⊗ 1]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑏 : 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/ ⊗ 2]

lin/q (𝑞; Γ, {𝑞} : 𝐶 ⊨ 𝑎 : 𝐴)
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/q/ ⊗ 1]

lin/q (𝑞; Γ, {𝑞} ⊨ 𝑏 : 𝐵)
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑖 ] ⟨𝑎, 𝑏⟩ :!𝑛 (𝐴 ⊗ 𝐵) [lin/q/ ⊗ 2]

But the tensor elimination rule is more similar to our lambda
rules, as we must ensure linearity of both bound variables.

Γ1, !Δ;𝑄1 ⊢ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2) Γ2, !Δ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2;𝑄2 ⊢ 𝑎 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴

(⊗𝑒 )

Γ ⊨ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2)
Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴
lin (𝑥 :!𝑛𝐵1; Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴)
lin (𝑦 :!𝑛𝐵2; Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴)

Γ ⊨ let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴
[⊗𝑒 ]

lin (𝑧 : 𝐶; Γ, 𝑧 : 𝐶 ⊨ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2))
lin (𝑧 : 𝐶; Γ, 𝑧 : 𝐶 ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin/ ⊗ 1]

lin/q (𝑞; Γ, {𝑞} ⊨ 𝑏 :!𝑛 (𝐵1 ⊗ 𝐵2))
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin/q/ ⊗ 1]

lin (𝑧 : 𝐶; Γ, 𝑧 : 𝐶, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2 ⊨ 𝑎 : 𝐴)
lin/(𝑧 : 𝐶; Γ, 𝑧 : 𝐶 ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin ⊗ 2]

lin/q (𝑞; Γ, 𝑥 :!𝑛𝐵1, 𝑦 :!𝑛𝐵2; {𝑞} ⊨ 𝑎 : 𝐴)
lin/q (𝑞; Γ, {𝑞} ⊨[⊗𝑒 ] let ⟨𝑥,𝑦⟩ = 𝑏 in 𝑎 : 𝐴) [lin/q/ ⊗ 2]

For unit elimination, we have (unsurprisingly)
6
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Γ1, !Δ;𝑄1 ⊢ 𝑏 :!𝑛1 Γ2, !Δ;𝑄2 ⊢ 𝑎 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ let ∗ = 𝑏 in 𝑎 : 𝐴

(∗e)

Γ ⊨ 𝑏 :!𝑛1 Γ ⊨ 𝑎 : 𝐴
Γ ⊨ let ∗ = 𝑏 in 𝑎 : 𝐴

[∗e]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑏 : 𝐵)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/*1]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑏 : 𝐵)
lin/q (𝑞; Γ; {𝑞} ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/q/*1]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎 : 𝐴)
lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/*2]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑎 : 𝐴)
lin/q (𝑞; Γ; {𝑞} ⊨[∗𝑒 ] let ∗ = 𝑏 in 𝑎 : 𝐴) [lin/q/*2]

The booleans are typed as expected, relying on no linear re-
sources so there are no associated linearity predicates.

!Δ; ∅ ⊢ True :!𝑛bool (⊤) !Δ; ∅ ⊢ False :!𝑛bool (⊥)

Γ ⊨ True :!𝑛bool [⊤] Γ ⊨ False :!𝑛bool [⊥]
Further, although the [𝑖 𝑓 ] rule has three variables, we check

linearity in the condition 𝑏 or in both the consequences 𝑎1, 𝑎2, as
we do not want to lose linearity (say) if we checked only that a
variable 𝑥 was used linearly in the truth branch but the false branch
executed.

Γ1, !Δ;𝑄1 ⊢ 𝑏 : bool Γ2, !Δ;𝑄2 ⊢ 𝑎1 : 𝐴 Γ2, !Δ;𝑄2 ⊢ 𝑎2 : 𝐴
Γ1, Γ2, !Δ;𝑄1, 𝑄2 ⊢ if 𝑏 then 𝑎1 else 𝑎2 : 𝐴

(𝑖 𝑓 )

Γ ⊨ 𝑏 : bool Γ ⊨ 𝑎1 : 𝐴 Γ ⊨ 𝑎2 : 𝐴
Γ ⊨ if 𝑏 then 𝑎1 else 𝑎2 : 𝐴

[𝑖 𝑓 ]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑏 : bool)
lin (𝑥 : 𝐶, Γ, 𝑥 : 𝐶 ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/if1]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑏 : bool)
lin/q (𝑞, Γ; {𝑞} ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/q/if1]

lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎1 : 𝐴) lin (𝑥 : 𝐶; Γ, 𝑥 : 𝐶 ⊨ 𝑎2 : 𝐴)
lin (𝑥 : 𝐶, Γ, 𝑥 : 𝐶 ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/if2]

lin/q (𝑞; Γ; {𝑞} ⊨ 𝑎1 : 𝐴) lin/q (𝑞; Γ; {𝑞} ⊨ 𝑎2 : 𝐴)
lin/q (𝑞, Γ; {𝑞} ⊨[𝑖 𝑓 ] if 𝑏 then 𝑎1 else 𝑎2 : 𝐴)

[lin/q/if1]

Lastly, we model circuits differently than in Proto-Quipper. Be-
low is the rule in PQ for typing circuits. Here, 𝑡 of type 𝑇 and 𝑎

of type 𝑈 can be thought of as the inputs and the outputs (up to
reduction), respectively, of a circuit 𝐶 from a countable set C of
circuit constants. These circuits are treated abstractly[11].

𝑄1 ⊢ 𝑡 : 𝑇 !Δ;𝑄2 ⊢ 𝑎 : 𝑈 In(𝐶) = 𝑄1 Out(𝐶) = 𝑄2
!Δ; ∅ ⊢ (𝑡,𝐶, 𝑎) :!𝑛Circ(𝑇,𝑈 ) (𝑐𝑖𝑟𝑐)

Given that in SQP, we are able to treat circuits as actual functions,
our typing rule argues that, at the term level, a circuit tuple (𝐶,𝑢) is

of type Circ(𝑇,𝑈 ) if 𝐶 is of type 𝑇 ′ ⇁ 𝑈 ′ and 𝑢 is of type𝑈 ⊸ 𝑈

where 𝑇 ′ as a base type in the circuit level is equivalent to 𝑇 as a
type in the term level (and ditto for𝑈 ,𝑈 ′).

Γ |= 𝐶 :𝐶 𝑇 ′ ⇁ 𝑈 ′ Γ |= 𝑢 : 𝑈 ⊸ 𝑈 𝑇 ≡ 𝑇 ′ 𝑈 ≡ 𝑈 ′

Γ ⊨ (𝐶,𝑢) : Circ(𝑇,𝑈 )
Here is the code for typing and linearity in Beluga.

1 oft : tm -> tp -> type.
2 oftq : qtm -> qtp -> type.
3 lin : ({x : tm} oft x A -> oft (b x) B)

-> type.
4 lin/q : ({x : qv} oft (b x) B) -> type.
5

6 lin/bang : {D : ({y : tm} {ty : oft y (!
B)} oft (a y) A)} -> lin D.

7

8 oft/axc : A subtype B -> oft z A -> oft z
B.

9

10 lin/axc : lin (\x.\tx.oft/axc _ tx).
11

12 oft/axq : oft (qvar q) qubit.
13

14 oftq/axq : {q : qv} oftq (qtm/qvar q) qtm
/qubit.

15

16 lin/q/qvar : lin/q (\q. (oft/axq : oft (
qvar q) qubit)).

17

18 const_tp : const_name -> tp -> type.
19

20 const_tp/box : tp2qtp T' T -> tp2qtp U' U
-> const_tp (boxt T) ((! (T' lolli U

')) lolli (! (circ T U))).
21

22 const_tp/unbox : tp2btp T' T -> tp2btp U'
U -> const_tp unbox ((circ T U)

lolli (! (T' lolli U'))).
23

24 const_tp/rev : tp2btp T' T -> tp2btp U' U
-> const_tp rev ((circ T U) lolli (!
(circ U T))).

25

26 oft/cst : const_tp c A -> (! A) subtype B
-> oft (const c) B.

27

28 oft/unit : strip_bangs A one -> oft unit
A.

29

30 oftq/unit : oftq qtm/unit qtp/unit.
31

32 oft/lam1 : {D : ({x : tm} oft x A -> oft
(b x) B)} -> lin D -> oft (lam b) (A
lolli B).

33

34 lin/lam1 : ({x : tm} {tx : oft x A} lin
(\y.\ty.D x tx y ty)) -> lin (\y.\ty.
oft/lam1 (\x.\tx.D x tx y ty) (L y ty
)).

35

7
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36 lin/q/lam1 : ({x : tm} {tx : oft x A} lin
/q (\q. D x tx q)) -> lin/q (\q. oft/
lam1 (\x.\tx.D x tx q) (L q)).

37

38 oft/lam2 : {D : ({x : tm} oft x A -> oft
(b x) B)} -> lin D -> bang_of C (A
lolli B) -> oft (lam b) C.

39

40 oft/app : oft c (A lolli B) -> oft a A ->
oft (app c a) B.

41

42 lin/app1 : {D : {x : tm} oft x _ -> oft (
c x) (A lolli B)} -> lin D -> lin (\x
.\tx.oft/app (D x tx) _).

43

44 lin/app2 : {D : {x : tm} oft x _ -> oft (
a x) A} -> lin D -> lin (\x.\tx.oft/
app _ (D x tx)).

45

46 lin/q/app1 : {D : {q : qv} oft (c q) (A
lolli B)} -> lin/q D -> lin/q (\q.oft
/app (D q) _).

47

48 lin/q/app2 : {D : {q : qv} oft (c q) A}
-> lin/q D -> lin/q (\q.oft/app _ (D
q)).

49

50 oft/tensor_intro : oft a A -> oft b B ->
equibang AB A (A' tensor B') A' ->
equibang AB B (A' tensor B') B' ->
oft (pair a b) AB.

51

52 oftq/tensor_intro : oftq a qA -> oftq b
qB -> tp2qtp A qA -> tp2qtp B qB ->
tp2qtp (A tensor B) qAB -> oftq (qtm/
pair a b) qAB.

53

54 lin/tensor_intro1 : {D : {x : tm} oft x _
-> oft (a x) A} -> lin D -> lin (\x

.\tx.oft/tensor_intro (D x tx) _ _ _)

.
55

56 lin/tensor_intro2 : {D : {x : tm} oft x _
-> oft (b x) B} -> lin D -> lin (\x

.\tx.oft/tensor_intro _ (D x tx) _ _)

.
57

58 lin/q/tensor_intro1 : {D : {q : qv} oft (
a q) A} -> lin/q D -> lin/q (\q.oft/
tensor_intro (D q) _ _ _).

59

60 lin/q/tensor_intro2 : {D : {q : qv} oft (
b q) B} -> lin/q D -> lin/q (\q.oft/
tensor_intro _ (D q) _ _).

61

62 oft/tensor_elim : oft b B1B2 -> {D : {x :
tm} oft x B1 -> {y : tm} oft y B2 ->
oft (a x y) A} -> ({x : tm} {tx :

oft x B1} lin (D x tx)) -> ({y : tm}
{ty : oft y B2} lin (\x.\tx.D x tx y
ty)) -> equibang B1B2 B1 (B1 ' tensor
B2 ') B1' -> equibang B1B2 B2 (B1 '
tensor B2 ') B2' -> oft (let_pair b a)
A.

63

64 lin/tensor_elim2 : {D : {z : tm} oft z C
-> oft (b z) B1B2} -> lin D -> lin (\
z.\tz.oft/tensor_elim (D z tz) _ _ _
_ _).

65

66 lin/tensor_elim1 : ({x : tm} {tx : oft x
X} {y : tm} {ty : oft y Y} lin (\z.\
tz.D z tz x tx y ty)) -> lin (\z.\tz.
oft/tensor_elim _ (D z tz) (Ly z tz)
(Lx z tz) _ _).

67

68 lin/q/tensor_elim1 : ({x : tm} {tx : oft
x X} {y : tm} {ty : oft y Y} lin/q (\
q.D q x tx y ty)) -> lin/q (\q.oft/
tensor_elim _ (D q) (Ly q) (Lx q) _ _
).

69

70 lin/q/tensor_elim2 : {D : {q : qv} oft (b
q) B1B2} -> lin/q D -> lin/q (\q.oft

/tensor_elim (D q) _ _ _ _ _).
71

72 oft/let_unit : strip_bangs B one -> oft b
B -> oft a A -> oft (let_unit b a) A

.
73

74 lin/let_unit1 : {D : {x : tm} oft x C ->
oft (b x) B} -> lin D -> lin (\x.\tx.
oft/let_unit _ (D x tx) _).

75

76 lin/let_unit2 : {D : {x : tm} oft x C ->
oft (a x) A} -> lin D -> lin (\x.\tx.
oft/let_unit _ _ (D x tx)).

77

78 lin/q/let_unit1 : {D : {q : qv} oft (b q)
B} -> lin/q D -> lin/q (\q.oft/

let_unit _ (D q) _).
79

80 lin/q/let_unit2 : {D : {q : qv} oft (a q)
A} -> lin/q D -> lin/q (\q.oft/

let_unit _ _ (D q)).
81

82 oft/circ : ofctp_circ C (ctp_circ/lolli T
U) -> oft u (U lolli U) -> tp2btp T

T' -> tp2btp U U' -> oft (qcirc C u)
(circ T U).

6 Operational Semantics
To reiterate, the reason that we modify Proto-Quipper’s circuits is
to aid in the operational semantics, where Ross devotes much time
and effort to rigorously define set functions on wires – time and
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effort increased exponentially when it comes to mechanization. We
will demonstrate how our changes avoid such labour.

First, however, we note that SPQ’s non-circuit related operational
semantics are essentially equivalent. In PQ, they define a closure
[𝐶, 𝑎] on a circuit 𝐶 from their circuit constants and 𝑎 a term. SPQ
does so with 𝐶 a circuit lambda from the circuit level and 𝑎, too, a
term. Below are the rules which are identical in PQ and SPQ.

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, 𝑎𝑏] → [𝐶′, 𝑎′𝑏] (𝑓 𝑢𝑛)

[𝐶,𝑏] → [𝐶′, 𝑏′]
[𝐶, 𝑣𝑏] → [𝐶′, 𝑣𝑏′] (𝑎𝑟𝑔)

[𝐶,𝑏] → [𝐶′, 𝑏′]
[𝐶, ⟨𝑎, 𝑏⟩] → [𝐶′, ⟨𝑎, 𝑏′⟩] (𝑟𝑖𝑔ℎ𝑡)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, ⟨𝑎, 𝑣⟩] → [𝐶′, ⟨𝑎′, 𝑣⟩] (𝑙𝑒 𝑓 𝑡)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, let ∗ = 𝑎 in 𝑏] → [𝐶′, let ∗ = 𝑎′ in 𝑏] (𝑙𝑒𝑡∗)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, let ⟨𝑥,𝑦⟩ = 𝑎 in 𝑏] → [𝐶′, let ⟨𝑥,𝑦⟩ = 𝑎′ in 𝑏] (𝑙𝑒𝑡)

[𝐶, 𝑎] → [𝐶′, 𝑎′]
[𝐶, if 𝑎 then 𝑏 else 𝑐] → [𝐶′, if 𝑎′ then 𝑏 else 𝑐] (𝑐𝑜𝑛𝑑)

[𝐶, (𝜆𝑥.𝑎)𝑣] → [𝐶, 𝑎[𝑣/𝑥]] (𝛽)

[𝐶, let ∗ = ∗ in 𝑎] → [𝐶, 𝑎] (𝑢𝑛𝑖𝑡)

[𝐶, let ⟨𝑥,𝑦⟩ = ⟨𝑣,𝑤⟩ in 𝑎] → [𝐶, 𝑎[𝑣/𝑥,𝑤/𝑦]] (𝑝𝑎𝑖𝑟 )

[𝐶, if False then 𝑎 else 𝑏] → [𝐶,𝑏] (𝑖 𝑓 𝐹 )

[𝐶, if True then 𝑎 else 𝑏] → [𝐶, 𝑎] (𝑖 𝑓 𝑇 )

The circuit rule in PQ is as expected.

[𝐷, 𝑎] → [𝐷′, 𝑎′]
[𝐶, (𝑡, 𝐷, 𝑎)] → [𝐶, (𝑡, 𝐷′, 𝑎′)] (𝑐𝑖𝑟𝑐)

SQP does the same, although on circuit tuples (𝐷, 𝑎) instead.
[𝐷, 𝑎] → [𝐷′, 𝑎′]

[𝐶, (𝐷, 𝑎)] → [𝐶, (𝐷′, 𝑎′)] [𝑐𝑖𝑟𝑐]

SPQ becomes more interesting when we consider the [𝑏𝑜𝑥],
[𝑢𝑛𝑏𝑜𝑥], and [𝑟𝑒𝑣] rules. We return where we left off in our discus-
sion of the (𝑏𝑜𝑥) rule:

SpecFQ (𝑣) (𝑇 ) = 𝑡 new(FQ (𝑡)) = 𝐷

[𝐶,𝑏𝑜𝑥𝑇 (𝑣)] → [𝐶, (𝑡, 𝐷, 𝑣𝑡)]
(𝑏𝑜𝑥)

Here, 𝑆𝑝𝑒𝑐𝑋 (𝑇 ) returns an X-specimen for T, which is a quantum
data term 𝑡 that is “fresh” with respect to the quantum variables
appearing in 𝑋 . Too, new creates a new identity circuit on those
wires. SPQ accomplishes the same overarching goal through gener-
ating a new circuit explicitly, without necessitating the creation of
𝑆𝑝𝑒𝑐𝑋 (𝑇 ) or new, as the HOAS handles fresh variables.

Γ ⊨ 𝑣 : 𝑇 ⊸ 𝑈 Γ |= 𝐷 :𝐶 𝑇 ′ ⇁ 𝑈 ′ 𝑇 ≡ 𝑇 ′ 𝑈 ≡ 𝑈 ′

[𝐶,𝑏𝑜𝑥𝑇 (𝑣)] → [𝐶, (𝐷,𝑢)]
Similarly, the (𝑢𝑛𝑏𝑜𝑥) rule is difficult to encode, as has previously

been explained. 𝑏𝑖𝑛𝑑 , Append, FQ , and dom all rely on explicit
reasoning about lists.

𝑏𝑖𝑛𝑑 (𝑣,𝑢 ) = 𝔟 Append(𝐶,𝐷, 𝔟) = (𝐶′, 𝔟′ ) FQ (𝑢′ ) ⊆ dom(𝔟′ )
[𝐶, (𝑢𝑛𝑏𝑜𝑥 (𝑢,𝐷,𝑢′ ) )𝑣 ] → [𝐶′, 𝔟′ (𝑢′ ) ] (𝑢𝑛𝑏𝑜𝑥 )

Instead, SPQ utilizes the idea that circuit appending is equivalent
to function application of our circuit lambas, which is a quite elegant
solution.

[𝐶,𝑢𝑛𝑏𝑜𝑥 (𝐷,𝑢)] → [𝜆𝑥. 𝑎𝑝𝑝 𝐷 (𝑎𝑝𝑝 𝐶 𝑥), 𝑢] [𝑢𝑛𝑏𝑜𝑥]

Not all of this has yet been encoded in Beluga, but it is currently
being worked on.

7 Remaining Work and Conclusion
The primary remaining task for this project is to formalize the
metatheory of Structural Proto-Quipper (SPQ). Two key proofs
need to be encoded in Beluga’s computational layer using the Curry-
Howard Isomorphism: progress and type preservation.

Progress asserts that a well-typed term is either a value or can
take a step further in execution. Type preservation guarantees that
if a term takes a step, it remains well-typed [8]. These properties are
fundamental safety guarantees in Proto-Quipper and are proven
for typed closures of the form:

Γ;𝑄 ⊢ [𝐶, 𝑎] : 𝐴, (𝑄 ′ | 𝑄 ′′)
Here, Γ and 𝑄 represent linear and quantum contexts, [𝐶, 𝑎]

denotes a closure, Γ;𝑄 ⊢ 𝑎 : 𝐴 is a valid typing judgment, 𝑄 ′

represents the inputs to 𝐶 , and 𝑄,𝑄 ′′ are the outputs of 𝐶 . At
present, we lack a clear representation of these concepts in SPQ.
Should no direct mapping exist, significant effort will be required
to conceptualize how to formulate progress and type preservation
proofs for SPQ. In their absence, the work remains incomplete.

Another critical avenue is proving equivalence between the
mechanization of a language and the language itself. However,
since SPQ operates at the circuit level, which differs substantially
from Proto-Quipper, reasoning about such equivalence poses a chal-
lenge. It is uncertain what form this equivalence would take, or
even if it is achievable.

Additionally, as this project serves as a proof-of-concept for
Crary and Sano et al.’s linearity predicate technique, we are inter-
ested in applying it to other frameworks. Among a family of Proto-
Quipper-adjacent languages, one promising candidate is Proto-
Quipper-Dyn [4]. This language introduces dynamic lifting, allow-
ing outputs of quantum circuits to influence further circuit genera-
tion. Mechanizing Proto-Quipper-Dyn with the linearity predicate
technique could provide significant insights.

In conclusion, we have demonstrated the potential of using a
linearity predicate to replicate linearity within a Higher-Order
Abstract Syntax (HOAS) system. This work introduced a structural
variant of a quantum programming language grounded in linear
logic, optimized for mechanization. We presented the typing rules
and operational semantics for SPQ and believe strongly in the
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potential of this technique. Even on a small scale, it has the power
to significantly simplify the verification of quantum algorithms for
researchers. We differ from Mahmoud et al.[9] in that we do so
exclusively within the HOAS.

As much of this research is still taking place, certain elements
of this report may be amended in the next months. We hope this
provides an overview of the project as it stands right now.
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