Problem and Motivation

» Goal: Develop a general method for mechanizing
quantum programming languages that use linear
logic, which manages resources like qubits.

» Key Idea: Solve the challenge of integrating linear
logic into systems based on structural logic by
‘enforcing linearity without linearity.'

« Proof of Concept: Mechanize Proto-Quipper, a
quantum language for generating circuits, using
Beluga, a formal reasoning tool.

» Prove two properties:

a.Subject Reduction: Well-typed expressions
retain their type after stepping.

b.Progress: Well-typed expressions either result
in a value or can step further.

Background and Related Work

« Mahmoud et al. mechanized Proto-Quipper by
formalizing its semantics and proving type
soundness.

» Used a linear extension of Hybrid in Coq to enforce
linearity.

 This project avoids such extensions and enforces
linearity within the Logical Framework itself.

» Builds on Karl Crary’s technique for representing
Girard's linear logic in Twelf.

» Crary defined a predicate to ensure variables are
used linearly in typing judgments.

» Sano et al. applied this approach in Beluga for
session typing.

 This project extends the idea to quantum
programming languages as a proof-of-concept

Structural Proto-Quipper:
Mechanization of a Linear Quantum
Programming Language in a Structural Setting

Approach and Uniqueness

In mechanizing Proto-Quipper, two linearity predicates

were introduced

lin ¢ {x:tm} oft F x A = oft F (b x) B — type.

lin/g : {x : qv} oft F (b x) B — type.

« These predicates ensure variables, including quantum
variables, are used linearly within the typing judgment.

» The predicate takes as input a function from Beluga
variables and their types to output a typing
judgement

- By modeling variables as Beluga variables, the
predicates leverage higher-order abstract syntax,
simplifying proofs.

 Achieved entirely within the Logical Framework,
without extensions, unlike Mahmoud et al.'s approach.

 Similar to the method used by Sano et al. in Beluga for
concurrency.

Results and Contribution

« The mechanization of Proto-Quipper using linearity
predicates was successful, validating Crary’s
technique in a new context.

« Proofs for subject reduction and progress are still
incomplete.

« These proofs exist in Beluga’s computational layer,
where the Curry-Howard isomorphism represents

them as recursive functions.

« Further work on intermediate lemmas is required to
finalize these theorems.

 Plans to explore the mechanization of Proto-Quipper-
Dyn, a newer version of Proto-Quipper that
incorporates dynamic lifting.

This work was
funded by an
NSERC USRA

from UQAM
and the
FRQONT

*McGill
University

tUQAM

Max Gross, Ryan Kavanagh,
Brigitte Pientka, Chuta Sano

Terms of Proto-Quipper

= x| q| (t,C,a) | True | False | {a,b) | * | ab | \z.a |

rev ‘ unbox | box’ | if a then b else ¢ ‘ let x =q in b ‘

let (z,y) = a in b.

tbu = q | x| (tu).

Types of Proto-Quipper

qubit | 1 | bool | A B | A—- B | !A | Cire(T,U).

qubit | 1 | I'e@U.

Example Mechanization

LA QiFa:"A Ty lAQubb: "B)
[, T, 1A Qr, Q2 - <a’7b> : !n(A® B) 7,

9D,
LL]
O
<
L]
o
L]
L
L]
o

oft/ei : oft F a A
— oft F b B
— equibang AB A A' e B' A’
— equibang ABB A' e B' B'
— oft F pair a b AB.

lin/ei1 : D : {x : tm} oft F x
lin D
— lin \x. \tx. oft/ei (D x tx) _ _ _

— oft F (a x) A

lin/ei2 : D : {x : tm} oft F x
lin D
— 1lin \x. \tx. oft/ei _ (D x tx) _ _

— oft F (b x) B

[1] Karl Crary. 2010. Higher-order representation of substructural logics. SIGPLAN
Not. 45, 9 (sep 2010), 131-142. https://doi.org/10.1145/1932681.1863565

[2] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. 2023. Proto-Quipper
with Dynamic Lifting. Proc. ACM Program. Lang. 7, POPL, Article 11 (jan 2023),

26 pages. https://doi.org/10.1145/3571204

[3] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987),
1-101. https://doi.org/10.1016/0304-3975(87)90045-4

[4] Robert Harper. 2005. Mechanizing the meta-theory of programming languages.
In Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming (Tallinn, Estonia) (ICFP ’05). Association for Computing Machinery,
New York, NY, USA, 240. https://doi.org/10.1145/1086365.1086396

(5] Mohamed Yousri Mahmoud and Amy P. Felty. 2019. Formalization of Metatheory
of the Quipper Quantum Programming Language in a Linear Logic. Journal of
Automated Reasoning 63, 4 (2019), 967-1002. https://doi.org/10.1007/s10817-019-
09527-x

[6] Brigitte Pientka and Jana Dunfield. 2010. Beluga: A Framework for Programming
and Reasoning with Deductive Systems (System Description). In Automated Rea-
soning, Jurgen Giesl and Reiner Hahnle (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 15-21.

[7] Neil Julien Ross. 2015. Algebraic and Logical Methods in Quantum Computation.
Ph. D. Dissertation. Dalhousie University.

(8] Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. 2023. Mechanizing Session-
Types using a Structural View: Enforcing Linearity without Linearity. Proc. ACM
Program. Lang. 7, OOPSLAZ2, Article 235 (oct 2023), 26 pages. https://doi.org/10.
1145/3622810

