
Structural Proto-Quipper
Mechanization of a Linear Quantum Programming Language in a

Structural Setting

Max Gross1 Brigitte Pientka 2 Ryan Kavanagh 3 Chuta Sano 2

1Department of Mathematics and Statistics
McGill University

2School of Computer Science
McGill University

3Département d’informatique
UQÁM

ECLaPS, Dec. 7th 2024

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 1 / 28



Table of Contents

1 Enforcing Linearity...

2 Without Linearity

3 Structural Proto-Quipper

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 2 / 28



Linear Logic

1 Linear logic is a sub-structural logic without the contraction and
weakening rules

i.e. Propositions, resources, etc. must be used once and exactly once

2 Similarly to the λ-calculus, we utilize the Curry-Howard isomorphism
to understand proofs in linear logic as terms in a linear λ-calculus

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 3 / 28



Linear Logic

1 Linear logic is a sub-structural logic without the contraction and
weakening rules

i.e. Propositions, resources, etc. must be used once and exactly once

2 Similarly to the λ-calculus, we utilize the Curry-Howard isomorphism
to understand proofs in linear logic as terms in a linear λ-calculus

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 3 / 28



Linear Logic

1 Linear logic is a sub-structural logic without the contraction and
weakening rules

i.e. Propositions, resources, etc. must be used once and exactly once

2 Similarly to the λ-calculus, we utilize the Curry-Howard isomorphism
to understand proofs in linear logic as terms in a linear λ-calculus

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 3 / 28



Leap to Quantum

There exists a natural application to quantum information theory regarding
linear logic as a quantum-circuit language

1 No contraction ⇐⇒ ”no cloning property”

2 No weakening ⇐⇒ ”no deletion property”

Thus, we have a quantum λ-calculus (which is linear),the basis of many
quantum programming languages.
”quantum programming language captures the ideas of quantum
computation in a linear type theory” (Staton, 2015)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 4 / 28



Leap to Quantum

There exists a natural application to quantum information theory regarding
linear logic as a quantum-circuit language

1 No contraction ⇐⇒ ”no cloning property”

2 No weakening ⇐⇒ ”no deletion property”

Thus, we have a quantum λ-calculus (which is linear),the basis of many
quantum programming languages.
”quantum programming language captures the ideas of quantum
computation in a linear type theory” (Staton, 2015)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 4 / 28



Leap to Quantum

There exists a natural application to quantum information theory regarding
linear logic as a quantum-circuit language

1 No contraction ⇐⇒ ”no cloning property”

2 No weakening ⇐⇒ ”no deletion property”

Thus, we have a quantum λ-calculus (which is linear),the basis of many
quantum programming languages.
”quantum programming language captures the ideas of quantum
computation in a linear type theory” (Staton, 2015)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 4 / 28



Leap to Quantum

There exists a natural application to quantum information theory regarding
linear logic as a quantum-circuit language

1 No contraction ⇐⇒ ”no cloning property”

2 No weakening ⇐⇒ ”no deletion property”

Thus, we have a quantum λ-calculus (which is linear),the basis of many
quantum programming languages.

”quantum programming language captures the ideas of quantum
computation in a linear type theory” (Staton, 2015)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 4 / 28



Leap to Quantum

There exists a natural application to quantum information theory regarding
linear logic as a quantum-circuit language

1 No contraction ⇐⇒ ”no cloning property”

2 No weakening ⇐⇒ ”no deletion property”

Thus, we have a quantum λ-calculus (which is linear),the basis of many
quantum programming languages.
”quantum programming language captures the ideas of quantum
computation in a linear type theory” (Staton, 2015)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 4 / 28



Mechanization

Our goal is to mechanize linear quantum programming languages.

1 Quantum programs are notoriously difficult to reason about,
mechanization allows rigorous, machine-checkable proofs of
correctness for quantum programs.

2 As quantum programming languages are developed, important for
developers to simultaneously advance the language and formalize its
metatheory.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 5 / 28



Mechanization

Our goal is to mechanize linear quantum programming languages.

1 Quantum programs are notoriously difficult to reason about,
mechanization allows rigorous, machine-checkable proofs of
correctness for quantum programs.

2 As quantum programming languages are developed, important for
developers to simultaneously advance the language and formalize its
metatheory.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 5 / 28



Mechanization

Our goal is to mechanize linear quantum programming languages.

1 Quantum programs are notoriously difficult to reason about,
mechanization allows rigorous, machine-checkable proofs of
correctness for quantum programs.

2 As quantum programming languages are developed, important for
developers to simultaneously advance the language and formalize its
metatheory.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 5 / 28



Mechanization... Is Hard

Our main challenge is managing variable bindings in linear contexts.

Previous mechanizations of linear type systems treat contexts
explcitly.

i.e treat contexts as lists of variables, operate on those lists to prove
various lemmas.

Inefficient and burdensome to prove metatheoretic results, like
progress and type preservation.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 6 / 28



Mechanization... Is Hard

Our main challenge is managing variable bindings in linear contexts.

Previous mechanizations of linear type systems treat contexts
explcitly.

i.e treat contexts as lists of variables, operate on those lists to prove
various lemmas.

Inefficient and burdensome to prove metatheoretic results, like
progress and type preservation.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 6 / 28



Mechanization... Is Hard

Our main challenge is managing variable bindings in linear contexts.

Previous mechanizations of linear type systems treat contexts
explcitly.

i.e treat contexts as lists of variables, operate on those lists to prove
various lemmas.

Inefficient and burdensome to prove metatheoretic results, like
progress and type preservation.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 6 / 28



Mechanization... Is Hard

Our main challenge is managing variable bindings in linear contexts.

Previous mechanizations of linear type systems treat contexts
explcitly.

i.e treat contexts as lists of variables, operate on those lists to prove
various lemmas.

Inefficient and burdensome to prove metatheoretic results, like
progress and type preservation.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 6 / 28



Mechanization... Is Hard

Our main challenge is managing variable bindings in linear contexts.

Previous mechanizations of linear type systems treat contexts
explcitly.

i.e treat contexts as lists of variables, operate on those lists to prove
various lemmas.

Inefficient and burdensome to prove metatheoretic results, like
progress and type preservation.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 6 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS.

But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Higher Order Abstract Syntax

Why Higher Order Abstract Syntax is awesome:

HOAS relieves the need for explicitly encoded contexts

Variables are encoded as functions in our host language or proof
assistant

Our host language manages contexts for us!

However, HOAS is not a cure-all:

It manages contexts structurally, NOT linearly.

=⇒ We cannot encode a linear logic within the HOAS. But we can come
close.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 7 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper
1 Operates like Proto-Quipper, but with a structural context
2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper
1 Operates like Proto-Quipper, but with a structural context
2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper

1 Operates like Proto-Quipper, but with a structural context
2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper
1 Operates like Proto-Quipper, but with a structural context

2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper
1 Operates like Proto-Quipper, but with a structural context
2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper
1 Operates like Proto-Quipper, but with a structural context
2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Our Contribution

We mechanize a quantum programming language within the HOAS
itself (no extensions)

Specifically, we mechanize Proto-Quipper, a small circuit-building
language based on the quantum λ-calculus within Beluga.

To that end, we design Structural Proto-Quipper
1 Operates like Proto-Quipper, but with a structural context
2 Optimized treatment of circuits for mechanization

We encode it in the LF layer and mechanize proofs of its safety
properties (TBD)

This is based on a techique from (Sano et al, 2023)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 8 / 28



Proto-Quipper I

Qubit rule:

!∆; {q} ⊢ q : qubit
(axq)

Issue

How do we ensure the (linear) context is empty?

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 9 / 28



Proto-Quipper I

Qubit rule:

!∆; {q} ⊢ q : qubit
(axq)

Issue

How do we ensure the (linear) context is empty?

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 9 / 28



Proto-Quipper II

Application rule:

Γ1, !∆;Q1 ⊢ c : A ⊸ B Γ2, !∆;Q2 ⊢ a : A

Γ1, Γ2, !∆;Q1,Q2 ⊢ ca : B
(app)

Issue

How do we split the (linear) context into Γ1, Γ2,Q1,Q2?

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 10 / 28



Proto-Quipper II

Application rule:

Γ1, !∆;Q1 ⊢ c : A ⊸ B Γ2, !∆;Q2 ⊢ a : A

Γ1, Γ2, !∆;Q1,Q2 ⊢ ca : B
(app)

Issue

How do we split the (linear) context into Γ1, Γ2,Q1,Q2?

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 10 / 28



Proto-Quipper III

λ1 rule

Γ, x : A;Q ⊢ b : B

Γ;Q ⊢ λx .b : A ⊸ B
(λ1)

Issue

How can we select out variable x from the context?

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 11 / 28



Proto-Quipper III

λ1 rule

Γ, x : A;Q ⊢ b : B

Γ;Q ⊢ λx .b : A ⊸ B
(λ1)

Issue

How can we select out variable x from the context?

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 11 / 28



Linear Predicates

We use local linearity predicates to ensure that all well-typed programs
use their internally bound classical and quantum variables linearly.

i.e. Wherever an assumption is introduced, as part of the typing rule that
introduced it, we can check that that assumption is used linearly

Predicate:

lin (x : A; Γ, x : A ⊨ b : B), lin/q (q; Γ, {q} ⊨ b : B)

says that classical (resp. quantum) variable x of type A (resp. q) is used
linearly within a typing judgement that b is of type B.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 12 / 28



Linear Predicates

We use local linearity predicates to ensure that all well-typed programs
use their internally bound classical and quantum variables linearly.

i.e. Wherever an assumption is introduced, as part of the typing rule that
introduced it, we can check that that assumption is used linearly

Predicate:

lin (x : A; Γ, x : A ⊨ b : B), lin/q (q; Γ, {q} ⊨ b : B)

says that classical (resp. quantum) variable x of type A (resp. q) is used
linearly within a typing judgement that b is of type B.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 12 / 28



Linear Predicates

We use local linearity predicates to ensure that all well-typed programs
use their internally bound classical and quantum variables linearly.

i.e. Wherever an assumption is introduced, as part of the typing rule that
introduced it, we can check that that assumption is used linearly

Predicate:

lin (x : A; Γ, x : A ⊨ b : B), lin/q (q; Γ, {q} ⊨ b : B)

says that classical (resp. quantum) variable x of type A (resp. q) is used
linearly within a typing judgement that b is of type B.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 12 / 28



Structural Proto-Quipper I

Qubit rule:

!∆; {q} ⊢ q : qubit
(axq)

Issue

How do we ensure the (linear) context is empty?

Solution

lin/q (q; Γ, {q} ⊨ q : qubit)
[lin/q/var]

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 13 / 28



Structural Proto-Quipper I

Qubit rule:

!∆; {q} ⊢ q : qubit
(axq)

Issue

How do we ensure the (linear) context is empty?

Solution

lin/q (q; Γ, {q} ⊨ q : qubit)
[lin/q/var]

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 13 / 28



Structural Proto-Quipper II

Application rule:

Γ1, !∆;Q1 ⊢ c : A ⊸ B Γ2, !∆;Q2 ⊢ a : A

Γ1, Γ2, !∆;Q1,Q2 ⊢ ca : B
(app)

Issue

How do we split the (linear) context into Γ1, Γ2,Q1,Q2?

Solution

lin (x : B; Γ, x : B ⊨ c : A ⊸ B) x ̸∈ FV(a)

lin (x : B; Γ, x : B ⊨ ca : B)
[lin/app1]

lin (x : B; Γ, x : B ⊨ a : A) x ̸∈ FV(c)

lin (x : B; Γ, x : B ⊨ ca : B)
[lin/app2]

. . .

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 14 / 28



Structural Proto-Quipper II

Application rule:

Γ1, !∆;Q1 ⊢ c : A ⊸ B Γ2, !∆;Q2 ⊢ a : A

Γ1, Γ2, !∆;Q1,Q2 ⊢ ca : B
(app)

Issue

How do we split the (linear) context into Γ1, Γ2,Q1,Q2?

Solution

lin (x : B; Γ, x : B ⊨ c : A ⊸ B) x ̸∈ FV(a)

lin (x : B; Γ, x : B ⊨ ca : B)
[lin/app1]

lin (x : B; Γ, x : B ⊨ a : A) x ̸∈ FV(c)

lin (x : B; Γ, x : B ⊨ ca : B)
[lin/app2]

. . .

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 14 / 28



Structural Proto-Quipper II

Application rule:

Γ1, !∆;Q1 ⊢ c : A ⊸ B Γ2, !∆;Q2 ⊢ a : A

Γ1, Γ2, !∆;Q1,Q2 ⊢ ca : B
(app)

Issue

How do we split the (linear) context into Γ1, Γ2,Q1,Q2?

Solution

. . .

lin/q (q; Γ, {q} ⊨ c : A ⊸ B) q ̸∈ FQV(a)

lin/q (q; Γ, {q} ⊨ ca : B)
[lin/q/app1]

lin/q (q; Γ, {q} ⊨ a : A) q ̸∈ FQV(c)

lin/q (q; Γ, {q} ⊨ ca : B)
[lin/q/app2]

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 15 / 28



Structural Proto-Quipper III

λ1 rule

Γ, x : A;Q ⊢ b : B

Γ;Q ⊢ λx .b : A ⊸ B
(λ1)

Issue

How can we select out variable x from the context?

Solution

Γ, x : A ⊨ b : B lin (x : A; Γ, x : A ⊨ b : B)

Γ ⊨ λx .b : A ⊸ B
[λ1]

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 16 / 28



Structural Proto-Quipper III

λ1 rule

Γ, x : A;Q ⊢ b : B

Γ;Q ⊢ λx .b : A ⊸ B
(λ1)

Issue

How can we select out variable x from the context?

Solution

Γ, x : A ⊨ b : B lin (x : A; Γ, x : A ⊨ b : B)

Γ ⊨ λx .b : A ⊸ B
[λ1]

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 16 / 28



Difference from (Sano et al., 2023)

Our linearity predicates are on variables on typing judgements, while
the original predicate was made on terms themselves.

This is due to the fact that there is no term-level difference in
Proto-Quipper between linear and structural resources.

Non-Linear Resources

lin (x :!A; Γ, x :!A ⊨ b : B)
[lin/!]

Non-linear resources are always being used linearly, counter-intuitively.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 17 / 28



Difference from (Sano et al., 2023)

Our linearity predicates are on variables on typing judgements, while
the original predicate was made on terms themselves.

This is due to the fact that there is no term-level difference in
Proto-Quipper between linear and structural resources.

Non-Linear Resources

lin (x :!A; Γ, x :!A ⊨ b : B)
[lin/!]

Non-linear resources are always being used linearly, counter-intuitively.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 17 / 28



Difference from (Sano et al., 2023)

Our linearity predicates are on variables on typing judgements, while
the original predicate was made on terms themselves.

This is due to the fact that there is no term-level difference in
Proto-Quipper between linear and structural resources.

Non-Linear Resources

lin (x :!A; Γ, x :!A ⊨ b : B)
[lin/!]

Non-linear resources are always being used linearly, counter-intuitively.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 17 / 28



Difference from (Sano et al., 2023)

Our linearity predicates are on variables on typing judgements, while
the original predicate was made on terms themselves.

This is due to the fact that there is no term-level difference in
Proto-Quipper between linear and structural resources.

Non-Linear Resources

lin (x :!A; Γ, x :!A ⊨ b : B)
[lin/!]

Non-linear resources are always being used linearly, counter-intuitively.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 17 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.
2 unbox takes a circuit and returns a circuit generating function.
3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.
2 unbox takes a circuit and returns a circuit generating function.
3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.
2 unbox takes a circuit and returns a circuit generating function.
3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.

2 unbox takes a circuit and returns a circuit generating function.
3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.
2 unbox takes a circuit and returns a circuit generating function.

3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.
2 unbox takes a circuit and returns a circuit generating function.
3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Circuits in Proto-Quipper

In Proto-Quipper, circuits are modeled as terms (t,C , a) with t, a terms
and C is an uninterpreted circuit from a countable set of circuit constants
(one for every possible circuit).

1 Every circuit constant is equipped with functions IN and OUT which
specify its inputs and outputs.

2 We have constant terms boxT, unbox, and rev

1 boxT takes a circuit generating function and returns a circuit.
2 unbox takes a circuit and returns a circuit generating function.
3 rev reverses a circuit.

Circuit Typing

Q1 ⊢ t : T !∆;Q2 ⊢ a : U In(C ) = Q1 Out(C ) = Q2

!∆; ∅ ⊢ (t,C , a) :!nCirc(T ,U)
(circ)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 18 / 28



Issues with Circuits in Proto-Quipper

1 Because circuits are uninterpeted, we cannot say that the input Q1 of
C entails that t is of type T (same for output)

2 Proto-Quipper’s implementation of boxT, unbox, and rev requires
complex operations on lists to create new circuits, append circuits
together, and reverse circuits.
Remember, this is what this project seeks to avoid!

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 19 / 28



Issues with Circuits in Proto-Quipper

1 Because circuits are uninterpeted, we cannot say that the input Q1 of
C entails that t is of type T (same for output)

2 Proto-Quipper’s implementation of boxT, unbox, and rev requires
complex operations on lists to create new circuits, append circuits
together, and reverse circuits.

Remember, this is what this project seeks to avoid!

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 19 / 28



Issues with Circuits in Proto-Quipper

1 Because circuits are uninterpeted, we cannot say that the input Q1 of
C entails that t is of type T (same for output)

2 Proto-Quipper’s implementation of boxT, unbox, and rev requires
complex operations on lists to create new circuits, append circuits
together, and reverse circuits.
Remember, this is what this project seeks to avoid!

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 19 / 28



Circuits in SPQ

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

Instead, we treat everything quantum
in Structural Proto-Quipper as
elements in a linear λ-calculus such
that:

quantum wires are represented
by tuples of variables passed
into...

quantum circuits, regarded as
function abstractions.

Appending circuits becomes function
composition & creating new circuits
is simply the identity map.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 20 / 28



Circuits in SPQ

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

Instead, we treat everything quantum
in Structural Proto-Quipper as
elements in a linear λ-calculus such
that:

quantum wires are represented
by tuples of variables passed
into...

quantum circuits, regarded as
function abstractions.

Appending circuits becomes function
composition & creating new circuits
is simply the identity map.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 20 / 28



Circuits in SPQ

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

Instead, we treat everything quantum
in Structural Proto-Quipper as
elements in a linear λ-calculus such
that:

quantum wires are represented
by tuples of variables passed
into...

quantum circuits, regarded as
function abstractions.

Appending circuits becomes function
composition & creating new circuits
is simply the identity map.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 20 / 28



Circuits in SPQ

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

Instead, we treat everything quantum
in Structural Proto-Quipper as
elements in a linear λ-calculus such
that:

quantum wires are represented
by tuples of variables passed
into...

quantum circuits, regarded as
function abstractions.

Appending circuits becomes function
composition & creating new circuits
is simply the identity map.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 20 / 28



Circuits in SPQ

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

boxT moves us from our circuit level
to SPQ and unbox moves us SPQ to
our circuit level.

Typing Circuits

Γ ⊨ C : T ⇁ U Γ ⊨ u : U ⊸ U

Γ ⊨ (C , u) : Circ(T, U)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 21 / 28



Circuits in SPQ

SPQ

Quantum λ-calculus

Circ(T,U)

Linear λ-calculus

Circuits

λ i.o.

boxT unbox

Figure: Two Levels of SPQ

boxT moves us from our circuit level
to SPQ and unbox moves us SPQ to
our circuit level.

Typing Circuits

Γ ⊨ C : T ⇁ U Γ ⊨ u : U ⊸ U

Γ ⊨ (C , u) : Circ(T, U)

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 21 / 28



LF Encoding of Types

tp : type.
tm : type.
clam : type.

ctp base : type.
ctp circ : type.

qv : type.

A,B ::= . . .
qubit
A ⊸ B
Circ(T ,U)

tp/qubit : tp.
tp/⊸ : tp → tp → tp.
tp/circ : ctp base → ctp base → tp.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 22 / 28



LF Encoding of Terms

tp : type.
tm : type.
clam : type.

ctp base : type.
ctp circ : type.

a, b ::= . . .
q
λx .a
(C , u)

tm/qubit :qv → tm.
tm/lam : (tm → tm) → tm.
tm/circ : clam → tm → tm.

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 23 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

lin/q (q; Γ, {q} ⊨ q : qubit)
[lin/q/var]

⇓

lin/q/qvar : lin/q (\ q. (oft/axq : oft (qvar q) qubit))

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 24 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

lin/q (q; Γ, {q} ⊨ q : qubit)
[lin/q/var]

⇓

lin/q/qvar : lin/q (\ q. (oft/axq : oft (qvar q) qubit))

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 24 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

lin/q (q; Γ, {q} ⊨ q : qubit)
[lin/q/var]

⇓

lin/q/qvar : lin/q (\ q. (oft/axq : oft (qvar q) qubit))

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 24 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

lin (x : B; Γ, x : B ⊨ c : A ⊸ B) x ̸∈ FV(a)

lin (x : B; Γ, x : B ⊨ ca : B)
[lin/app1]

⇓

lin/app1 : {D:{x:tm} oft x → oft (c x) (A ⊸ B)} lin D
→ lin (\ x.\ tx. oft/app (D x tx) ).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 25 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

lin (x : B; Γ, x : B ⊨ c : A ⊸ B) x ̸∈ FV(a)

lin (x : B; Γ, x : B ⊨ ca : B)
[lin/app1]

⇓

lin/app1 : {D:{x:tm} oft x → oft (c x) (A ⊸ B)} lin D
→ lin (\ x.\ tx. oft/app (D x tx) ).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 25 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

Γ, x : A ⊨ b : B lin (x : A; Γ, x : A ⊨ b : B)

Γ ⊨ λx .b : A ⊸ B
[λ1]

⇓

oft/lam1 : {D:({x:tm} oft x A → oft (b x) B)} lin D
→ oft (lam b) (A ⊸ B).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 26 / 28



LF Encoding of Linearity Predicates

x : A
lin (x : A; Γ, x : A ⊨ b : B)
lin/q (q; Γ, {q} ⊨ b : B)

oft : tm → tp → type.
lin : ({x:tm} oft x A
→ oft (b x) B) → type.
lin/q : (x : qv oft (b x) B) → type.

Γ, x : A ⊨ b : B lin (x : A; Γ, x : A ⊨ b : B)

Γ ⊨ λx .b : A ⊸ B
[λ1]

⇓

oft/lam1 : {D:({x:tm} oft x A → oft (b x) B)} lin D
→ oft (lam b) (A ⊸ B).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 26 / 28



LF Encoding of Circuits

clam : type.
ctp base : type.
ctp circ : type.

Acirc ::= Bbase ⇁ Cbase

w : Bbase

C : Acirc

clamlin (w ,W )

Γ ⊨ C : T ⇁ U Γ ⊨ u : U ⊸ U

Γ ⊨ (C , u) : Circ(T, U)

ctp circ/⊸: ctp base → ctp base →
ctp circ.
ofctp base : clam → ctp base →
type.
ofctp circ : clam → ctp circ → type.
clamlin : (clam → clam) → type.
oft/circ : ofctp circ C (T ⇁ U) →
oft u (U ⊸ U) → oft (tm/circ C u)
(tp/circ T U).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 27 / 28



Conclusion

Structural Proto-Quipper is a proof-of-concept for (Sano et al.,
2023)’s approach to mechanizing linear programming languages in a
quantum setting.

We further offer mechanization-optimized improvements to
Proto-Quipper through treating circuits and wires as elements in a
linear lambda calculus.

Remaining to show proofs of metatheoretic properties, like progress
and type preservation and some kind of equivalence between
Proto-Quipper and SPQ.

Further work includes mechanizing Proto-Quipper-Dyn, which
supports dynamic lifting (i.e. circuits can be changed based on their
outputs).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 28 / 28



Conclusion

Structural Proto-Quipper is a proof-of-concept for (Sano et al.,
2023)’s approach to mechanizing linear programming languages in a
quantum setting.

We further offer mechanization-optimized improvements to
Proto-Quipper through treating circuits and wires as elements in a
linear lambda calculus.

Remaining to show proofs of metatheoretic properties, like progress
and type preservation and some kind of equivalence between
Proto-Quipper and SPQ.

Further work includes mechanizing Proto-Quipper-Dyn, which
supports dynamic lifting (i.e. circuits can be changed based on their
outputs).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 28 / 28



Conclusion

Structural Proto-Quipper is a proof-of-concept for (Sano et al.,
2023)’s approach to mechanizing linear programming languages in a
quantum setting.

We further offer mechanization-optimized improvements to
Proto-Quipper through treating circuits and wires as elements in a
linear lambda calculus.

Remaining to show proofs of metatheoretic properties, like progress
and type preservation and some kind of equivalence between
Proto-Quipper and SPQ.

Further work includes mechanizing Proto-Quipper-Dyn, which
supports dynamic lifting (i.e. circuits can be changed based on their
outputs).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 28 / 28



Conclusion

Structural Proto-Quipper is a proof-of-concept for (Sano et al.,
2023)’s approach to mechanizing linear programming languages in a
quantum setting.

We further offer mechanization-optimized improvements to
Proto-Quipper through treating circuits and wires as elements in a
linear lambda calculus.

Remaining to show proofs of metatheoretic properties, like progress
and type preservation and some kind of equivalence between
Proto-Quipper and SPQ.

Further work includes mechanizing Proto-Quipper-Dyn, which
supports dynamic lifting (i.e. circuits can be changed based on their
outputs).

Gross, Max (McGill) Structural Proto-Quipper ECLaPS, Dec. 7th 2024 28 / 28


	Enforcing Linearity...
	Without Linearity
	Structural Proto-Quipper

